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The Patch Transfer Functions (PTF) method is used in this paper to model the structure-
acoustic coupling in heavy fluid. This substructuring method allows determining the response
of a coupled system with a reasonable computational cost. Finite Element Method is used in
the proposed approach to compute the PTF of uncoupled subsystems, which are finally cou-
pled through their common surface divided into elementary areas called patches. The basic
equations of PTF method are reminded before introducing the residual modes concept in the
cavity-PTF computation. Contrary to residual modes technique classically used in FEM, resid-
ual cavity modes defined in the proposed approach are independent of the structural system
and allows modifications of structural modes without recalculate residual cavity modes. They
allows accelerating the convergence of the method, especially in case of strong coupling. A
comparison with standard FEM is proposed for a plate coupled to a water-filled cavity and
excited by a point force. The convergence of FEM method is studied as well as that of the PTF
method with and without residual modes. Finally, the combination of the PTF method with
the residual mode concept gives proper results for a coarser interface mesh than that used in
standard FEM.

1. Introduction

The vibro-acoustic coupling is often met in industrial applications and consequently remains
an important issue. This interaction has been extensively studied through analytical modellings pro-
viding comprehensive formulations [1, 2, 3]. Although providing physical insights, these models are
limited to simple system geometries.
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As soon as industrial problems are considered the Finite Element Method (FEM) replaces analytical
methods. However, a complex geometry leads to large FE models which are time consuming. In such
conditions, dynamic reduction methods like Component Mode Synthesis [4] are used. These methods
based on the modal approach allows reducing the size of the FE model by describing the dynamics
of the coupled system with a reduced but sufficient number of degrees of freedom. Unfortunately, in
case of strong coupling the use of in vacuo modal bases leads to poor convergence properties if the
coupling between high order modes of a subsystem with low order modes of the other one is miscal-
culates. For this purpose, pseudostatic correction [5, 6] or residual modes concepts [7, 8] have been
introduced to improve the convergence of FEM.
In the present study, the forced response of simply supported plate backed by a water-filled cavity is
computed by the Patch Transfer Functions (PTF) method [9], which is based on substructuring and
impedance and mobility approaches [10]. The residual modes concept is introduced in the method to
improve its convergence and keep advantages of substructuring. In this paper, the theoretical back-
ground of the method is first briefly reminded. The convergence of FEM method is then studied as
well as that of the PTF method with and without residual modes. Obtained results confirm expected
advantages of the proposed method, namely proper predictions of structure-acoustic response with a
coarser interface mesh than that used in standard FEM.

2. Vibro-acoustic problem

A structure backed by a water-filled cavity with rigid wall and excited by a point force Fs on its
surface Sv is considered Fig. 1.

Figure 1. Basic vibro-acoustic problem

The structure is governed by its equation of motion with boundary conditions imposed on its
boundary ∂Sv. Furthermore, this structure is subject to a point force Fs and the pressure-induced
force Fc describing the action of the cavity on the structure. Finally, we suppose that the structure
displacement us(M, t) is harmonic and satisfies Eq. 1.{

Ls.us(M,ω) = Fs + Fc ∀M ∈ Sv
Boundary conditions on ∂Sv

(1)

The acoustic cavity is governed by the Helmholtz equation with rigid walls boundary conditions
imposed on the rigid surface Sr. Moreover, a normal harmonic displacement un(M, t) resulting from
the vibration of the structure is imposed on the vibrating surface Sv. Finally, the acoustic pressure in
the cavity p(M, t) is supposed harmonic and satisfies Eq. 2.
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∆p (M) + k2p (M) = 0 ∀M ∈ Ωi

∂p

∂n
(M) = 0 ∀M ∈ Sr

∂p

∂n
(M) = ρω2un(M) ∀M ∈ Sv

(2)

The weak form of Eqs. 1 and 2 leads to the FE model gives by Eq. 3.([
Ks C
0 Kf

]
− ω2

[
Ms 0
−CT Mf

]){
Us
P

}
=

{
Fs
0

}
(3)

In Eq. 3, the subscript s corresponds to the structure, while the subscript f corresponds to the
fluid domain, i.e. the acoustic cavity. Furthermore, the structure-cavity coupling is introduced through
the coupling matrix C.

3. Patch Transfer Functions method

3.1 Definition of the basic quantities

As exposed in [9, 11, 12], the PTF method is based on substructuring and impedance and
mobility concepts to compute with a reasonable computational cost the response of coupled systems.
One of the main adantages of this method is to solve each subsystem indenpendently of the others.
By this way, a modification of one of the subsystems only leads to update this subsystem, provided
the geometry of the structure-cavity interface remains unchanged.
In the case presented in this paper, the structure-cavity system is divided into two subsystems, the
structure and the acoustic cavity. Then, the interface surface Sv between the subsystems is divided
into elementary areas called patches, where the PTF are defined for each subsystem.

For the structure, the PTF is the mobility Yjk between an excited patch k and a receiving patch
j defined as the ratio of the mean structural velocity v̄sj on the patch j and the mean pressure p̄sk on
the patch k:

Yjk =
v̄sj
p̄sk

(4)

For the acoustic cavity, the PTF is the impedance Zjk defined as the ratio of the mean acoustic
pressure p̄cj on the patch j and the mean normal velocity v̄ck on the patch k:

Zjk =
p̄cj
v̄ck

(5)

3.2 Structure-cavity coupling

To couple the subsystems, continuity equations are written for each patch j belonging to the
interface surface Sv as expressed in Eq. 6.{

p̄sj = p̄cj = p̄j

v̄sj = v̄cj = v̄j
(6)

Then, the linearity of the problem is used to compute the mean patch normal velocity v̄sj and the
mean patch pressure p̄cj . The mean patch normal velocity v̄sj is defined as the superposition of the in
vacuo structural velocity ˜̄vsj and the normal velocity Y s

jkp̄k due to the pressure induced by the acoustic
cavity on the structure, while the mean patch pressure p̄cj is defined as the superposition of the pressure

3



16th International Congress on Sound and Vibration, 5–9 July 2009, Kraków, Poland

created by the acoustic source inside the cavity ˜̄pcj and the pressure due to structural vibrations Zc
jkv̄k

(see Eq. 7). {
v̄sj = ˜̄vsj + Y s

jkp̄k

p̄cj = ˜̄pcj + Zc
jkv̄k

(7)

In absence of acoustic sources in the cavity, the introduction of Eq. 6 in Eq. 7 allows determining
the coupling normal velocity v̄j as expressed in Eq. 8.

v̄j =
(
I− Y s

jiZik
)−1 ˜̄vsk (8)

Where I is the identity matrix.

3.3 PTF computation

From a practical point of view, the PTF are derived from the FE formulation expanded on the
modal basis of each subsystems.

For the structure-PTF, we have to compute the normal structural velocity when the structure is
excited by a constant pressure p̄k on the patch surface Sk as defined by Eq. 4. Consequently, for each
patch k of the structure, the FE model given by Eq. 9 has to be solved.[

Ks − ω2Ms

]
{Us} = {Fk} (9)

Where the excitation term Fk corresponding to the constant pressure p̄k imposed on the patch k
is given by Eq. (10).

Fk =

{
Ak

N
p̄k on Sk

0 elsewhere
(10)

Where Ak is the area of the patch k, N the number of FE nodes included in the patch k.

To solve Eq. 10, the standard mode expansion is used, which means that the displacement {Us}
is expanded on its in vacuo structural modes as in Eq. 11.

{Us} = [ψn] {un} (11)

Where [ψn] is the modal shapes matrix and {un} is the modal amplitudes vector.

By this way, the reduced system given by Eq. 12 is obtained and solved at each frequency by
standard procedure to finally determine the structural displacement {Us}.[

Ksn − ω2Msn

]
{un} = {Fn} (12)

When repeating this procedure for each patch k, the structural velocity matrix [V ] is derived
and the structure-PTF Yjk is finally obtained by averaging the normal velocities for nodes included in
the receiving patch j.

The cavity-PTF are similarly derived from the FE model of the acoustic cavity as expressed by
Eq. 13. [

Kf − ω2Mf

]
{P} = {Qk} (13)

Where the excitation term Qk corresponding to the constant normal velocity v̄ck imposed on the
patch k is given by Eq. 14.

Qk =

{
−jωAk

N
v̄ck on Sk

0 elsewhere
(14)
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It is important to notice that in above equations, the PTF have been defined without introducing
residual modes. In the following section, it will be shown that the convergence of the PTF method
is difficult to achieve for acoustic cavities filled with a heavy fluid like water. In this situation, the
residual modes are computed to enrich the modal basis of the cavity and consequently improve the
convergence of the proposed method.

4. Simulation of the structure-cavity coupling in heavy fluid

In this section, the PTF method is used to compute the response of structure-cavity system
and compared with standard FEM calculation. For this purpose, we consider in this section a paral-
lelepiped water-filled cavity with rigid walls of dimension L × b × H = 0.5 × 0.4 × 1 m3 coupled
to a rectangular simply supported plate excited by a point force F in the frequency range of interest
[0; 100] Hz as presented in Fig. 2. The characteristics of the plate are: L×b = 0.5×0.4m2, thickness
h = 0.002 m, E = 2.1× 1011 Pa, ν = 0.3 and structural damping factor η = 0.02.

Figure 2. Definition of the rectangular simply-supported plate excited by a point force F and coupled to a
parallelepiped water-filled cavity

4.1 Influence of the discretization in FEM

The interface mesh size is a key parameter to properly describe the response of a coupled sys-
tem. To study the influence of this parameter, a direct resolution of the structure-cavity system is
performed for four interface mesh criteria using NASTRAN. These criteria are based on the smallest
wavelength λ of uncoupled plate and cavity and computed at the maximal studied frequency. For
each mesh criterion (λ

6
, λ

12
, λ

28
and λ

60
) the mean square velocity of the plate coupled to the water-filled

cavity is computed from Eq. 8 as presented in Fig. 3. This figure shows that a very fine interface mesh
is required since the convergence of standard FEM occurs for a λ

28
mesh criterion.

This poor convergence in heavy fluid is explained by the decrease in flexural wavelength due to
the added mass effect of the acoustic cavity on the plate.

4.2 Influence of residual modes in the PTF method

In light fluid, Ouisse et al. [11] have proven that a λ
2

patch mesh criterion for the coupling
surface was sufficient to obtain proper results. However, in heavy fluid, the decrease of the flexural
wavelength of the plate coupled to an acoustic cavity has to be taken into account. Consequently, we
used a λ

6
patch mesh criterion, which corresponds in the present case to 56 patches.

In the example presented in Fig. 4, 5 structural modes, corresponding to modes computed up
to 205 Hz, have been used to compute the structure-PTF Y s

jk, which is sufficient to ensure its conver-
gence. A first computation using 2 cavity modes, corresponding to modes computed up to 750 Hz,
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Figure 3. Convergence of FEM in heavy fluid - Comparison of mean square velocity obtained by direct
resolution for 4 mesh criteria: (-) λ6 , (- -) λ

12 , (-.-) λ
28 and (. . . ) λ

60

was performed with the PTF method. Results presented in Fig. 4 shows a poor convergence of the
method, which consequently requires a great number of cavity modes to converge. This poor con-
vergence also indicates that the contribution of the high-order cavity modes is very important when
considering a strong coupling. This limitation can be alleviated by using residual modes. Actually,
residual modes do not correspond to physical modes but allows enriching the modal basis by a set of
functions describing the high-order modes contribution.
To keep the substructuring aspect of the PTF method, the residual modes defined here corresponds
to the quasi-static response of the cavity excited by a constant normal displacement imposed on a
patch p as expressed in Eq. 15. By this way, the number of residual modes is equal to the number of
patches. One can also notice that this definition of the residual modes differs from that classically used
when solving structure-acoustic problems, since the residual modes for an acoustic cavity generally
corresponds to the quasi-static response of the cavity excited by structural normal modes.[

Kf − ω2
cMf

]
{Pr} = {Qp} (15)

Where the excitation term Qp corresponding to the unit normal displacement ūck imposed on the
patch k is given by Eq. 16.

Qp =

{
ω2
c
Ap

N
ūcp on Sp

0 elsewhere
(16)

The value of ωc in Eqs. 15 and 16 used in this example corresponds to 20% of the first non-zero cavity
mode (≈ 150 Hz). In fact, this value can be arbitrarily chosen as long as the value of this parameter
remains below the frequency of the last physical modes retained to compute the cavity-PTF.

The new reduction basis containing theN retained physical modes in the original basis enriched
by theNr residual modes has to be reorthogonalized to keep valid the mass and stiffness orthogonality
relation (see [13]).
In the example presented in this paper, the new reduction basis contains contains 2 physical modes
and 56 residual modes. When using this new reduction basis, the mean square velocity obtained by
the PTF method for a λ

6
patch mesh criterion is in a very good agreement with the reference result

computed by FEM. This shows that the combined use of PTF method and residual modes concept
allows an effective time-saving computation compared to standard FEM.
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Figure 4. Residual shapes effect - Comparison of mean square velocity for: (-) FEM solution ( λ28), (-.-) PTF
method without residual shapes (λ6 ) and (- -) PTF method introducing residual shapes (λ6 )

5. Conclusion

The PTF method has been used to solve the structure-acoustic coupling in heavy fluid. The
introduction of the residual modes technique in this approach allows keeping the advantages of the
PTF method while improving its efficiency. Indeed, the PTF method allows computing the response
of a coupled system with a reasonable computational cost by using substructuring and impedance
and mobility concepts. The present work shows that the combined used of both techniques gives
very satisfaying results with a coarser interface mesh than that used in the FEM. Finally, although the
method is presented on a simple case, it can be directly extended to more complex coupled systems,
since the formulation is based on the FE model of each subsystem.
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