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ABSTRACT 
Finite Element model can be used to predict the vibro-acoustic behaviour of elastic structures coupled by 
water filled cavities. These calculations can be time consuming due to the large size of the problem. To 
overcome this drawback, one proposes to use the Patch Transfer Functions (PTF) approach to partition the 
global problem in different sub-problems. Then, one studies different manners of partitioning the problem 
and different approaches to estimate the PTF of each sub-problem. One will show that the partitioning 
outside the near field of the structures permits to reduce the number of patches for frequencies below the 
critical frequency. On another hand, a non standard modal expansion based on a symmetrical formulation 
of the fluid-structure problem permit to calculate the PTF with enough accuracy to ensure the convergence 
the PTF method and to save computing time compared to direct resolution. This approach is an efficient 
tool for modelling of sound transmission through ship structures in the mid-frequency for instance. 
Keywords: fluid-structure interaction, heavy fluid, numerical methods 

1. INTRODUCTION 
The modeling of the interaction between an elastic structure and water filled cavities is of interest 

in many applications, especially in the nuclear and the naval industries. The finite element methods 
and boundary element analyses are relevant in an industrial context to model fluid-structure 
interaction since they allow considering the structures and interfaces of arbitrary shapes. However, 
these models lead to non-symmetric matrices and the number of degrees of freedom to be taken into 
account (ie the number of unknowns) increases rapidly with frequency. The direct solution of the  
corresponding linear system may then be too time-consuming. Alternative methods [1-9] have been 
proposed to overcome this obstacle. Some [1,2] use the modes of the uncoupled subsystems (i.e. 
in-vacuo modes of the structure and modes of the cavity with rigid walls) and the addition of residual 
modes to improve the convergence of modal expansions. Others [3-7] consist to symmetrize the 
matrices describing the fluid-structure interaction in order to extract easily the coupled modes in a 
second step. 
In this paper, we propose to sub-structure the fluid-structure problem from the PTF approach (Patch 
Transfer Functions) [10-12] for a frequency range well below the critical frequency of the structure, fc. 
This PTF approach is based on substructuring through surfaces divided in elementary areas called 
patches and it consists in studying each subsystem independently in order to build a set of transfer 
functions defined by using mean values on the patches, called Patch Transfer Functions. Then, 
assembling PTF by using the superposition principle for linear passive system and using the continuity 
relations lead to a fast resolution of the coupled problem. This method was successfully applied to 
address problems of acoustic radiation for the automotive industry. We wish extending it here to the 
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interaction between a structure and a heavy fluid cavity. The principle of the method is recalled in 
section 2. The PTF approach making no assumptions about the strength of the subsystems coupling, we 
will discuss in section 3 the possibility of sub-structuring the problem in the near field of the structure 
or outside this zone. A basic analytical model allows defining a criterion that estimates the optimal 
position of the coupling surface surface in order to the pressure distribution varies spatially as the 
acoustical wavelength on the coupling surface. It permits to define the patch size criterion based on the 
acoustic wavelength that reduces the number of patches comparing to a substructuring in the near field 
of the plate. These investigations are validated on a basic test case. This approach implies the 
calculation of PTFs for a subsystem made up of a mechanical structure and a surrounding fluid. The 
computation of these PTFs is not easy, since the FE matrix associated to this subsystem is 
non-symmetric. To overcome this difficulty, a non standard modal expansion involving a 
symmetrization of the finite element equations of the fluid-structure problem is proposed in section 4. 

2. PTF approach 
Let us consider the vibro-acoustic problem as illustrated Fig. 1 on an academic case. An elastic 

structure is excited by a harmonic point force and coupled to a rigid-wall cavity filled with a fluid at 
rest. The global system is decomposed into two subsystems by cutting the volume through a coupling 
surface, Sc. This surface is then divided into N patches. The position of this coupling surface and the 
number of patches will be discussed in section 3. 

 

 

 

 

Figure 1.  Structure-Cavity problem and PTF substructuring. 

To define the Patch Transfer Functions, each subsystem is considered independently. For the 
subsystem α (α=[1,2]), a constant normal velocity αiv  is prescribed on the patch i  of surface iS∂ , 
whereas a null normal velocity is prescribed on the other patches. One defines the PTF of subsystem α 
by: 

- the Patch Transfer Functions between the patch i and the patch j, α
ijZ :    

ii

j
ij Sv

p
Z

∂
= α

α
α , 

 

(1) 

where α
jp  is  the space-averaged pressure on the patch j. 

- the Patch Transfer Functions between the patch i and the point M inside the subcavity, α
iMZ :   
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M
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∂
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α
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(2) 

where α
Mp   is the resulting pressure at point M.  
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For the subsystem 1 which is excited by the external source, one defines also the blocked pressure 
of patch i , 1~

ip  as the mean of the resulting pressure on patch i due to the external force F. 
 
By using the superposition principle for linear passive and writing the continuity conditions on the 

N patches, we obtains (see [10]) a system of N linear equations having the N patch velocities as 
unknowns: 

( ) [ ]1 2 2 1

1

,   1,...,
N

ji ji j j i
j

Z Z S v p i N
=

 + ∂ = ∀ ∈ ∑ ɶ . (3) 

 
After solving this system, we can deduce (with the superposition principle for linear passive system), 
the pressure at point M of subsystem 1: 

1 1 1 2

1

N

M M iM i i
j

p p Z S v
=

= − ∂∑ɶ ,  (4) 

and, the pressure at point M’ of subsystem 2:  

2 2 2
' '

1

N

M iM i i
i

p Z S v
=

= ∂∑ . (5) 

 
The normal displacement at point M’’  of the mechanical structure (subsystem 1) may be deduced 

with the same process and using appropriate PTFs between the patches and the receiving point M’’ . 
  

The PTF approach allows us to calculate the response of the global system from the knowledge of 
the PTFs of each uncoupled subsystem and inverting a square matrix whose dimensions correspond to 
the number of patches. PTFs can be calculated by different techniques depending on the considered 
subsystem (analytical, finite element, boundary element, Rayleigh integral, etc.). These calculations 
are performed on each subsystem, separately. Then, the computer resources for achieving these 
calculations are generally lower than those require for solving the global problem. 

3. Position of the coupling surface 
In this section, the position of the coupling surface Sc is studied. This surface defines the interface 

between two subsystems. Since no assumptions are made in the PTF formulation on the subsystems 
coupling, it is theoretically possible to partition the global system by any fictive surface. 

 
Furthermore, a parametric study has shown that the patches should have a size lower than the half 

acoustic wavelength at the greater frequency of interest (i.e. patch size criterion λ/2) [10]. 
 
In the present paper, the structure is loaded by a heavy fluid. In general, in heavy fluid applications, 

the wavelength of the flexural motion of the structure is smaller than the acoustic wavelength, insofar 
as the critical frequency is very high. These two wavelengths will play a role in the fluid medium, 
depending of the distance from the structure. Indeed, in the near-field of the structure, the acoustic 
pressure varies according to the bending wavelength λf of the structure. Thus, the patch mesh criterion 
has to be based on the structural wavelength. However, it leads to an important number of patches. On 
the contrary, in the far-field of the structure, the acoustic pressure varies according to the acoustic 
wavelength λa. In this situation, a patch mesh criterion based on the half acoustic wavelength can be 
applied that limits the number of patches for frequencies below the critical frequency. 
 
   In order to define the portion of the fluid domain where one can assume that the acoustic pressure 
varies according to the acoustic wavelength, one studies the decay of evanescent waves in the fluid 
medium generated by an infinite flat plate equivalent to the considered structure. Based on a criterion 
of an attenuation of 10 dB of the evanescent waves, one obtains a minimal distance defined by: 

2
0

2lim
2

)10ln(

kk
Z

f −
= , 

 

(6) 

where fk , is the wavenumber of bending of the structure and 0k , the acoustic wavenumber at the 
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considered frequency. 
  To illustrate this discussion, one considers the test case shown on Fig. 1. It consists in a rectangular 
simply-supported plate excited by a point force F and coupled to a parallelepiped water filled cavity (stell 
plate: 2m x 1.5m; thickness, 17mm ; material : water filled cavity: 2m x 1.5mx1m). One proposes on Fig. 
2 the patch size criteria λf/2, λa/2 and the limit distance Zlim in function of the frequency for this test 
case. One can observe that if one considers a patch size of about 0.7 m, the criterion λa/2 is well 
respected up to 750 Hz, whereas it is only satisfy below 60 Hz for the λf/2 criterion. 

 
Two partitions of the cavity are considered for the PTF calculations: 

- The first where the coupling surface is positioned at 0.3 m from the plate, i.e. at a distance of the 
plate greater than Zlim for frequencies above 50 Hz (see substructuring of Fig. 1); 
- The second where the coupling surface is at 0.05 m from the plate, i.e. at a distance less than Zlim , 
whatever the frequency in the frequency range [1 Hz - 750 Hz]. 

 

Figure 2. Patch size criteria λ/2 (upper) for the 
fluid medium (black) and for the plate structure 

(blue). Zlim parameter defined by Eq. (10) (lower). 
 

Figure 3. Comparison of the pressure level inside the 
cavity for three calculations: red line, PTF results 

with the first substructuring; green line, PTF results 
with the second substructuring; black line, direct 

FEM results (reference). 
 

 PTF calculations are achieved for these two sub-structurings (9 patches on the surface coupling). 
The PTFs of each subsystem are obtained by solving directly the equations related to the finite element 
model of each subsystem (SOL108 in NASTRAN code). A reference result for this test case is obtained 
by a direct resolution of the FE problem of the global system. A comparison of the two PTF results 
with the reference one is proposed on Fig. 3. 
 

This comparison shows that the PTF calculation with the first substructuring gives results very 
close to the reference calculation over the entire frequency range while the PTF calculation with the 
second substructuring did not converge. The same results are obtained for others points inside the fluid 
domain and for points on the plate. It may be emphasized that the coupling surface of the PTF 
calculation with the first substructuring is located at a distance less than Zlim for frequencies below 50 
Hz, but the calculations converge at these frequencies because the size of the patches is less than λf/2.  
 

In conclusion, this result shows that a patch mesh criterion based on the half acoustic wavelength 
can be considered while the coupling surface is located at an “optimal” distance defined from Eq. (6). 
In this section, the PTFs of each subsystem were obtained by a direct resolution of the FEM equations, 
which were time consuming. We propose in the next section a non-standard modal approach for solving the 
fluid-structure problem related to the subsystem 1 (structure + surrounding cavity). 
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4. A modal expansion method for a fluid-structure problem 
Let us considered the finite element model (FE) of subsystem 1 composed by the plate and the 

surrounding fluid. The formulation (U, P) model is written by (see [3]): 









=


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
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S 0

0
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(7) 

where: - U and P represent the nodal displacements and the nodal pressure;  
- F are the nodal forces and Q the nodal volume velocities; 
- SM  and SK are the mass and stiffness matrices of the structure;  
- FM  and FK  are the mass and stiffness matrices of the cavity; 
- Aare the fluid-structure interaction matrix, and, the subscript T refers to the transposed matrix.  

 
This matrix system is not symmetric. Then, one can not directly apply conventional methods for 

extracting normal modes. To make it symmetric, one proposes applying the technique described in 
reference [3,4] which consists in multiplying equation (11) on the left by the matrix S as follows: 










−
= −

−

IMA

MK
S

S
T

S
T

S
1

1 0
. 

 

(8) 

One obtains the symmetric matrix system: 

[ ] ,2 FXMK =− ω  
 

(9) 

where:  

1 1 1

1 1 1

0
, , , .

0

T T TT
S S S S S S SS

T T T
S S F S SF

U K M K K M A K M FK
X K M F

P A M K K A M A A M F QM

− − −

− − −

    − 
= = = =      − + − +      

 

 

(10) 

 
Considering a FE model with lumped masses, the inversion of the mass matrix of the structure that 

occurs in these expressions is straightforward, avoiding the use of a numerical inversion process which 
consumes computational resources. 

 
As M andK matrices are symmetric, one can write the generalised eigenvalue problem:  

{ } { }[ ] .0ReRe =− XMK λ  (11) 

From a modal extraction method, the Θ first eigenvalues nλ  and the associated mass-normalized 
eigenvectors nφ  are numerically computed such that:  

{ } 1Re =n
T

n M φφ , { } nn
T

n K λφφ =Re , [ ]Θ∈ ,..,2,1n . 
(12) 

 
In a second step and in order to improve the convergence of modal series, one introduces residual 

mode shapes with the technique described in [12,13]. It consists in enriching the modal basis with 
"quasi-static" responses of the system for the different excitations, and then to orthogonalize the new 
basis. In our case, to calculate the PTF of subsystem 1, one considers the N excitations corresponding 
to the successive excitation of the N patches and the external excitation of the structure to calculate 
pressures blocked.   

 
At a specific angular frequency ωc, one calculates the residual shapes φi due to the N+1 

excitations iF :  

{ } { }[ ] iic FMK =− ϕω ReRe 2
. (13) 
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From these residual shapes, a new reduction basis P is defined as:  

{ }111 ...... += NP ϕϕφφ θ  (14) 

 
This basis is then re-orthogonalized with respect to the mass matrix, M and the stiffness matrix, 

K . αλ'  and αχ  , [ ]1, 1Nα Θ +∀ +∈  are, respectively, the new eigenvalues and the new 
eigenvectors which are mass-normalized.   

 
Then, to estimate the forced responseX  from Eq. (13) due to the excitation,iF , an approximate 

solution can be found in the new basis { }11...' ++Θ= NP χχ , 

Γ= 'PX  (15) 

where Γ is the vector of the modal coordinates. 

To this end, this expression is introduced in Eq. (13) and the resulting equation is projected in 
the 'P  basis.   

 
By neglecting the off-diagonal terms of the imaginary part of modal matrices, and by introducing 

the modal damping factors, αζ , αη  and the generalized force, αiF  defined as follows: 

( ) ααα χχζ MT Im= , ( ) ααα χχη KT Im= , αα χii FF =  (16) 

one obtains the modal coordinates αΓ :  

( ) ( ) [ ]1,1,
'11 2

++Θ∈∀
+++−

=Γ N
jj

Fi α
ληωζ ααα

α
α  (17) 

 
The response of the structure-cavity system is then calculated from Eqs. (19,21) and the modal 

information( )αα χλ ,' . DMAP procedure was written to perform the calculations of the coupled 
modes and the residual modes in the MSC/NASTRAN code. 

 
It may be noted that this non-standard modal decomposition for fluid-structure system shows two 

damping factors for each mode, αζ , αη . Their values depend on the damping factors associated to 
the structure and the cavity, and on the spatial distribution of the mode shapes.  

  
Figure 4. Comparison of three methods for estimating 

the input patch transfer function: dash-dotted line, 
modal superposition without residual shapes; dash 

line, modal superposition with residual shapes; solid 
line, direct FEM results. 

Figure 5. Comparison between three calculations of 
the pressure level in the cavity of the test case: 

dash-dotted line, PTF results using modal 
superposition without residual shapes; dash line, PTF 
results using modal superposition taking the residual 
shapes into account; solid line, direct FEM results. 
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For the test case described previously, one proposes on Fig. 4 to compare three calculations of the 
input patch transfer function of patch 1 of subsystem 1: a reference calculation obtained by a direct 
resolution of the finite element problem, a second calculation by the modal superposition method 
described in this section without considering the residual modes and finally, a third calculation using 
the modal superposition method taking into account the residual modes as described in this section. 
For these calculations, we consider the normal modes with a natural frequency below 1500 Hz (ie 100 
modes) and the specific pulsation ωc for calculating the residual shapes is set to 314 rad/s. It can be 
seen on Fig. 4 that the residual modes can significantly improve the convergence of modal expansions. 
A modification of the specific pulsation ωc does not alter these results as far as this one does not 
correspond to a natural pulsation of the considered subsystem. One emphasizes that the use of residual 
modes does not increase significantly the calculation times. 
 

These PTFs calculated from the modal method are then used in the PTF approach for estimating the 
global response of the test case. The acoustic pressure inside the cavity obtained from the PTF 
approach is compared with the reference results in Figs. 5. One can notice that the poor convergence of 
the PTFs calculated without the residual shape modes leads to significant errors in the PTF calculation 
of the acoustic pressure inside the cavity. On the other side, the use of residual modes yields results 
close to the reference result. A significant decrease in the computing times is obtained with the 
proposed PTF approach compared to a direct FE calculation.  

5. CONCLUSIONS 
One has shown that the PTF approach can be an efficient tool for modelling the heavy fluid - 

structure interaction. The optimal process has been obtained by substructuring the structure-cavity 
system outside the near-field zone of the structure and by using a non-standard modal decomposition 
for estimating the PTFs of the subsystem composed by the structure and the surrounding fluid. The 
approach can be used, for example, for estimating the sound transmission though bulkheads in the 
Sonar cavity of a submarine. 
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