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ABSTRACT

Finite Element model can be used to predict theovéltoustic behaviour of elastic structures coujgd
water filled cavities. These calculations can lmeeticonsuming due to the large size of the problEmm.
overcome this drawback, one proposes to use thol Fedinsfer Functions (PTF) approach to partithom t
global problem in different sub-problems. Then, shelies different manners of partitioning the peab
and different approaches to estimate the PTF ofi sab-problem. One will show that the partitioning
outside the near field of the structures permitsetiuice the number of patches for frequencies bétew
critical frequency. On another hand, a non standawdal expansion based on a symmetrical formulation
of the fluid-structure problem permit to calculttte PTF with enough accuracy to ensure the conmeege
the PTF method and to save computing time comp@retirect resolution. This approach is an efficient
tool for modelling of sound transmission througipsttructures in the mid-frequency for instance.
Keywords: fluid-structure interaction, heavy fluitdymerical methods

1. INTRODUCTION

The modeling of the interaction between an elasttioccture and water filled cavities is of interest
in many applications, especially in the nuclear #ma naval industries. The finite element methods
and boundary element analyses are relevant in auosinial context to model fluid-structure
interaction since they allow considering the stawet and interfaces of arbitrary shapes. However,
these models lead to non-symmetric matrices andhtimeber of degrees of freedom to be taken into
account (ie the number of unknowns) increases hapidth frequency. The direct solution of the
corresponding linear system may then be too tinmesaming. Alternative methods [1-9] have been
proposed to overcome this obstacle. Some [1,2]theemodes of the uncoupled subsystems (i.e.
in-vacuo modes of the structure and modes of théywaith rigid walls) and the addition of residual
modes to improve the convergence of modal expassi@thers [3-7] consist to symmetrize the
matrices describing the fluid-structure interactianorder to extract easily the coupled modes in a
second step.

In this paper, we propose to sub-structure thedfktructure problem from the PTF approach (Patch
Transfer Functions) [10-12] for a frequency rangdlWwelow the critical frequency of the structufg,

This PTF approach is based on substructuring thraigfaces divided in elementary areas called
patches and it consists in studying each subsysteependently in order to build a set of transfer
functions defined by using mean values on the pegcirtalled Patch Transfer Functions. Then,
assembling PTF by using the superposition prindiptdinear passive system and using the continuity
relations lead to a fast resolution of the coupbedblem. This method was successfully applied to
address problems of acoustic radiation for the motove industry. We wish extending it here to the
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interaction between a structure and a heavy fladity. The principle of the method is recalled in
section 2. The PTF approach making no assumptibostahe strength of the subsystems coupling, we
will discuss in section 3 the possibility of sulststturing the problem in the near field of the sture

or outside this zone. A basic analytical model wBadefining a criterion that estimates the optimal
position of the coupling surface surface in ordethe pressure distribution varies spatially as the
acoustical wavelength on the coupling surfaceehmts to define the patch size criterion basethen
acoustic wavelength that reduces the number ohgstcomparing to a substructuring in the near field
of the plate. These investigations are validatedaohasic test case. This approach implies the
calculation of PTFs for a subsystem made up of ahaeical structure and a surrounding fluid. The
computation of these PTFs is not easy, since thenikHrix associated to this subsystem is
non-symmetric. To overcome this difficulty, a nonarsdard modal expansion involving a
symmetrization of the finite element equationshaf fluid-structure problem is proposed in section 4

2. PTF approach

Let us consider the vibro-acoustic problem as thated Fig. 1 on an academic case. An elastic
structure is excited by a harmonic point force andpled to a rigid-wall cavity filled with a fluiet
rest. The global system is decomposed into twoystbss by cutting the volume through a coupling
surface,S.. This surface is then divided intb patches. The position of this coupling surface #re
number of patches will be discussed in section 3.

Mesh of subsysterm 1

Mesh of subsystern 2

Figure 1. Structure-Cavity problem and PTF sulo$tiing.

To define the Patch Transfer Functions, each subsyss considered independently. For the
subsystemo (a=[1,2]), a constant normal velocity” is prescribed on the patéhof surfacéS,
whereas a null normal velocity is prescribed ondtteer patches. One defines the PTF of subsystem
by:

- the Patch Transfer Functions between the patsid the patchy, Zif:
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where r)f’ is the space-averaged pressure on the gatch
- the Patch Transfer Functions between the patsid the poinM inside the subcavityy, :
a
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where py, is the resulting pressure at poMt



For the subsystem 1 which is excited by the extesaarce, one defines alsioe blocked pressure
of patchi, pil as the mean of the resulting pressure on piaticie to the external forde.

By using the superposition principle for linear pi@e and writing the continuity conditions on the
N patches, we obtains (see [10]) a systenNdinear equations having the patch velocities as

unknowns:
i[(zi +27)05¥|= B DDO[L...N. 3)

After solving this system, we can deduce (with skiperposition principle for linear passive system),
the pressure at poiM of subsystem 1:

N
Pu =Py 2 ZudSV, @
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and, the pressure at poiMt of subsystem 2:
N
P =2 Zu 0S V. (5)
i=1

The normal displacement at poiMi’ of the mechanical structure (subsystem 1) maydzided
with the same process and using appropriate PTHgelea the patches and the receiving pddrit

The PTF approach allows us to calculate the respohghe global system from the knowledge of
the PTFs of each uncoupled subsystem and inveatsguare matrix whose dimensions correspond to
the number of patches. PTFs can be calculated figreint techniques depending on the considered
subsystem (analytical, finite element, boundaryreet, Rayleigh integral, etc.). These calculations
are performed on each subsystem, separately. Tinencomputer resources for achieving these
calculations are generally lower than those reqtdgresolving the global problem.

3. Position of the coupling surface

In this section, the position of the coupling sed&; is studied. This surface defines the interface
between two subsystems. Since no assumptions ade mathe PTF formulation on the subsystems
coupling, it is theoretically possible to partititime global system by any fictive surface.

Furthermore, a parametric study has shown thap#tehes should have a size lower than the half
acoustic wavelength at the greater frequency @&rast (i.e. patch size criteridvi2) [10].

In the present paper, the structure is loadedibgavy fluid. In general, in heavy fluid applicatgn
the wavelength of the flexural motion of the stiuretis smaller than the acoustic wavelength, insofa
as the critical frequency is very high. These twavelengths will play a role in the fluid medium,
depending of the distance from the structure. lddée the near-field of the structure, the acoustic
pressure varies according to the bending waveleagihthe structure. Thus, the patch mesh criterion
has to be based on the structural wavelength. HewdéJeads to an important number of patches. On
the contrary, in the far-field of the structuregthcoustic pressure varies according to the asousti
wavelength,. In this situation, a patch mesh criterion basedh® half acoustic wavelength can be
applied that limits the number of patches for freqcies below the critical frequency.

In order to define the portion of the fluid doimavhere one can assume that the acoustic pressure
varies according to the acoustic wavelength, ondiss the decay of evanescent waves in the fluid
medium generated by an infinite flat plate equival® the considered structure. Based on a criterio
of an attenuation of 10 dB of the evanescent wawes,obtains a minimal distance defined by:

In(10)
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where K;, is the wavenumber of bending of the structure &gd the acoustic wavenumber at the
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considered frequency.

To illustrate this discussion, one considerstést case shown on Fig. 1. It consists in a rectiang
simply-supported plate excited by a point fofcand coupled to a parallelepiped water filled gaystell
plate: 2m x 1.5m; thickness, 17mm ; material : wétled cavity: 2m x 1.5mx1m). One proposes on.Fig
2 the patch size criteri&/2, A/2 and the limit distancé;, in function of the frequency for this test
case. One can observe that if one considers a Eatehof about 0.7 m, the criterioh/2 is well
respected up to 750 Hz, whereas it is only sakiefgw 60 Hz for thel/2 criterion.

Two partitions of the cavity are considered for BWEF calculations:
- The first where the coupling surface is positidrag 0.3 m from the plate, i.e. at a distance ef th
plate greater tha#,, for frequencies above 50 Hz (see substructuringigf 1);
- The second where the coupling surface is at lm0OfBom the plate, i.e. at a distance less tAgn,
whatever the frequency in the frequency range [ H&0 Hz].

PTF Palch size criterion. /2

Pressure level in the cavity at point (1.023.0.83.-0.86)
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Figure 2. Patch size criterd2 (upper) for the  Figure 3. Comparison of the pressure level indige t
fluid medium (black) and for the plate structure cavity for three calculations: red line, PTF result
(blue).z;, parameter defined by Eq. (10) (lower).with the first substructuring; green line, PTF fesu
with the second substructuring; black line, direct
FEM results (reference).

PTF calculations are achieved for these two subeiirings (9 patches on the surface coupling).
The PTFs of each subsystem are obtained by sotlinegtly the equations related to the finite eleinen
model of each subsystem (SOL108 in NASTRAN codekf&rence result for this test case is obtained

by a direct resolution of the FE problem of thelglbsystem. A comparison of the two PTF results
with the reference one is proposed on Fig. 3.

This comparison shows that the PTF calculation wité first substructuring gives results very
close to the reference calculation over the eritequency range while the PTF calculation with the
second substructuring did not converge. The sasudtseare obtained for others points inside thalflu
domain and for points on the plate. It may be ermspteal that the coupling surface of the PTF
calculation with the first substructuring is locat&t a distance less thdn, for frequencies below 50
Hz, but the calculations converge at these freguesneecause the size of the patches is lessAfan

In conclusion, this result shows that a patch n@glerion based on the half acoustic wavelength
can be considered while the coupling surface iatled at an “optimal” distance defined from Eq. (6).
In this section, the PTFs of each subsystem wetairdd by a direct resolution of the FEM equations,
which were time consuming. We propose in the negtien a non-standard modal approach for solvieg th
fluid-structure problem related to the subsystefstilicture + surrounding cavity).



4. A modal expansion method for a fluid-structure problem

Let us considered the finite element model (FE}pwibsystem 1 composed by the plate and the
surrounding fluid. The formulatiorlX, P) model is written by (see [3]):
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where: -U andP represent the nodal displacements and the noéabkpre;

- F are the nodal forces am@the nodal volume velocities;

- Mg and Kgare the mass and stiffness matrices of the stragtur

- M and K; are the mass and stiffness matrices of the cavity;

- Aare the fluid-structure interaction matrix, ande gubscript T refers to the transposed matrix.

This matrix system is not symmetric. Then, one pahdirectly apply conventional methods for
extracting normal modes. To make it symmetric, pn@poses applying the technique described in
reference [3,4] which consists in multiplying eqgoat(11) on the left by the matri® as follows:

KMt 0
S=| 5 8 : 8
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One obtains the symmetric matrix system:
K -a”M|X =F, ©)

where:
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Considering a FE model with lumped masses, thergioe of the mass matrix of the structure that
occurs in these expressions is straightforwardicarg the use of a numerical inversion process whic
consumes computational resources.

AsM andK matrices are symmetric, one can write the generdlesgenvalue problem:

[ReK}-ARMI|X =0. (11)
From a modal extraction method, ti8 first eigenvalues)ln and the associated mass-normalized
eigenvectors¢, are numerically computed such that:

o RMp =1, ¢" RdK}p =1, nO[12..0]. (12

In a second step and in order to improve the cagesere of modal series, one introduces residual
mode shapes with the technique described in [12,t3Jonsists in enriching the modal basis with
"gquasi-static" responses of the system for theedéfifit excitations, and then to orthogonalize th& ne
basis. In our case, to calculate the PTF of sulesydt, one considers tieexcitations corresponding
to the successive excitation of thNepatches and the external excitation of the stmecta calculate
pressures blocked.

At a specific angular frequencwr, one calculates the residual shapgsdue to theN+1

excitationd=i :
[RK}- w2 RMp, =F . (13)



From these residual shapes, a new reduction Pasiglefined as:

P={a..0/¢, #u.) (14)

_ This basis is then re-orthogonalized with respedhe mass matrixM and the stiffness matrix,
K. Nq and )y, , DaD[l,G)+ N +]] are, respectively, the new eigenvalues and the new
eigenvectors which are mass-normalized.

Then, to estimate the forced respob_@efrom Eq. (13) due to the excitatioR,, an approximate
solution can be found in the new bad®=1X;.. Xoins1f

X=PT (15)
where [ is the vector of the modal coordinates.
To this end, this expression is introduced in EkB)(and the resulting equation is projected in
theP' basis.

By neglecting the off-diagonal terms of the imaginpart of modal matrices, and by introducing
the modal damping factors{,, /7, and the generalized forcd,, defined as follows:

o= x MMy, 7, = x," MKy, . R, =Fx, 46
one obtains the modal coordinatés :

F
M, = : = . Oda0[L0+N +1 (7)
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The response of the structure-cavity system is ttedoulated from Eqgs. (19,21) and the modal
information(A'a ,)(a). DMAP procedure was written to perform the caltiolias of the coupled
modes and the residual modes in the MSC/NASTRANecod

It may be noted that this non-standard modal deamitipn for fluid-structure system shows two
damping factors for each mod€,,, 77, . Their values depend on the damping factors aasedtito
the structure and the cavity, and on the spatisrihution of the mode shapes.
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Figure 4. Comparison of three methods for estimgatinFigure 5. Comparison between three calculations of
the input patch transfer function: dash-dotted,line  the pressure level in the cavity of the test case:
modal superposition without residual shapes; dash dash-dotted line, PTF results using modal

line, modal superposition with residual shapesdsol superposition without residual shapes; dash lifi&, P

line, direct FEM results. results using modal superposition taking the redidu
shapes into account; solid line, direct FEM results



For the test case described previously, one praposd-ig. 4 to compare three calculations of the
input patch transfer function of patch 1 of subseystl: a reference calculation obtained by a direct
resolution of the finite element problem, a secaattulation by the modal superposition method
described in this section without considering tasidual modes and finally, a third calculation gsin
the modal superposition method taking into accdhetresidual modes as described in this section.
For these calculations, we consider the normal maedéh a natural frequency below 1500 Hz (ie 100
modes) and the specific pulsatiap for calculating the residual shapes is set to &l#s. It can be
seen on Fig. 4 that the residual modes can signiflg improve the convergence of modal expansions.
A modification of the specific pulsatioar does not alter these results as far as this oes dot
correspond to a natural pulsation of the considerdsystem. One emphasizes that the use of residual
modes does not increase significantly the calcofatimes.

These PTFs calculated from the modal method areuked in the PTF approach for estimating the
global response of the test case. The acousticspresinside the cavity obtained from the PTF
approach is compared with the reference resulisga. 5. One can notice that the poor convergeiice o
the PTFs calculated without the residual shape mésbads to significant errors in the PTF calculatio
of the acoustic pressure inside the cavity. Onatier side, the use of residual modes yields result
close to the reference result. A significant deseeén the computing times is obtained with the
proposed PTF approach compared to a direct FE ledicn.

5. CONCLUSIONS

One has shown that the PTF approach can be areetffitool for modelling the heavy fluid -
structure interaction. The optimal process has ba®ained by substructuring the structure-cavity
system outside the near-field zone of the strucéume by using a non-standard modal decomposition
for estimating the PTFs of the subsystem composethé structure and the surrounding fluid. The
approach can be used, for example, for estimatiegsound transmission though bulkheads in the
Sonar cavity of a submarine.
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