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Definition

Force identification is an inverse problem aiming at characterizing some features of the sources exciting a mechanical structure

Types of problems

1. Localization

Unknown source location

Vibration sensor
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Definition
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Restriction

In this lecture, we restrict ourselves to reconstruction problems expressed as a linear system

 is the measured vibration field

 describes the dynamic behavior of the structure (LTI assumption)

 is the excitation field to reconstruct

 is the noise corrupting the vibration data

➥ This talk will not cover methods such as Kalman Filters, Neural Networks, Virtual Fields, ...

X = HF+N

X

H

F

N
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1 m

3 cm

1 cm

Excitation point

Acceleration measurements

Unit harmonic point force @ 350 Hz

Measurement noise level - 20 dB

Data generation - ⚠ Inverse crime

 - Modal expansion (8 modes, f8 ≈ 992 Hz)

 - FEM (20 beam elements)

Colocated reconstruction configuration

Equal-determined inverse problem

Leading example Free-free steel beam in the frequency domain

X

H
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Main objective

Reconstruct From
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Naive reconstruction

=F H X−1
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What's wrong ?

Formally, one has:

=F ​ ​

i=1

∑
21

σ ​i

v ​u ​Xi i
H
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What's wrong ?

Formally, one has:

=F F ​ +true ​ ​

i=1

∑
21

σ ​i

v ​u ​Ni i
H

=F F ​ +true ​ ​

i=1

∑
21

σ ​i

v ​u ​Ni i
H

But  is ill-conditioned - 

Here 

H κ(H) ≈ 1300

σ ​ ≈21 2.5 ⋅ 10−2

➥ The noise is amplified by the smallest singular values

➥ Ill-posed inverse problems in Hadamard sense
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Ordinary Least Squares (OLS)

Idea  Find  minimizing the sum of the squared errorsF

=F ​ ∥X−
F

argmin HF∥ ​2
2
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What's wrong ?

Formally, one has:

=F (H H) H XH −1 H

But using the SVD

=F ​ ​

i=1

∑
21

σ ​i

v ​u ​Xi i
H

➥ Same as the naive approach ! (equal-det. problems)

➥ Useful for over/under-determined problems
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Truncated SVD

Idea  Filter the smallest singular values of H

In practice  Retain the first  singular values  such thatM (M < 21)

=F ​ ​

i=1

∑
M

σ ​i

v u ​Xi i
H

How to select M ?

14

Generalities State of the art BFR Extensions



One possible solution  L-curve principle

L ​(M) =c ( ​X−H(M) ​ ​, ​ ​ ​) with H(M) =F 2 F 2 ​σ ​u ​v ​

i=1

∑
M

i i i
H

L-curve
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One possible solution  L-curve principle

=M ​ K[L(M)]
M

argmax

L-curve
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Low pass filtering effect ⇒ Smooth solution

➥ Not adapted to sparse sources

Application
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What to do ?

Constrain the space of admissible solutions !

17
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-regularization Tikhonov regularizationℓ ​2

=F ​ ∥X−
F

argmin HF∥ ​ subject to ∥F∥ ​ ≤2
2

2
2 τ
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-regularization Tikhonov regularizationℓ ​2

=F ​ ∥X−
F

argmin HF∥ ​ +2
2 λ∥F∥ ​2

2

How to select λ ?

In practice  Many methods are available

Morozov's discrepancy principle

Generalized Cross Validation (GCV)

Reginska's method

Bayesian Estimator

....

L-curve principle
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-regularization Applicationℓ ​2

=F (H H+H λI) H X−1 H

L-curve
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-regularization Applicationℓ ​2

=F (H H+H λI) H X−1 H

Solution
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Low pass filtering effect ⇒ Smooth solution

➥ Not adapted to sparse sources

How to explain this result ?
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Filter factors  Basics

where  is the filter factor defined such that

=F ​f ​ ​

i=1

∑
21

i
σ ​i

v ​u ​Xi i
H

f ​i

TSVD -regularization

f ​ =i ​ ​{
1
0

for i ≤ M

otherwise

ℓ ​2

f ​ =i ​

σ ​ + λi
2
σ ​i

2
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TSVD

ff
ii

ff
ii 
/σ/σ

ii

11 /σ/σ
ii

-regularization

ff
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ff
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/σ/σ

ii

11 /σ/σ
ii

Filter factors  In action

ℓ ​2
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-regularization Generalitiesℓ ​q

=F ​ ∥X−
F

argmin HF∥ ​ +2
2 λ∥F∥ ​q

q
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x
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q = 2

q = 1

q = 0.5

q = 3

Unit circle - Unit circle - 
The smaller  is, the larger is the weight on small values of 

For large values of , the smaller  is, the smaller is the weight on

these values

q F

F q

➥  - Smooth solutionq ≥ 2

➥  - Sparse solutionq ≤ 1

⚠ Non-convex minimization problem when q < 1
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-regularization Numerical resolution

The first-order optimality condition for the -regularization leads to

ℓ ​q

ℓ ​q

=F H H+ λW( ) H X with w ​ =( H F )
−1

H
ii ​ ​ ​ ​

2
q
Fi

q−2

➥ Implementation of an iterative process

=F(k) H H+ λ W( ) H X( H (k) F(k−1) )
−1

H

23
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-regularization Numerical resolution

The first-order optimality condition for the -regularization leads to

ℓ ​q

ℓ ​q

=F H H+ λW( ) H X with w ​ =( H F )
−1

H
ii ​ ​ ​ ​

2
q
Fi

q−2

➥ Implementation of an iterative process

=F(k)
​∥X−

F
argmin HF∥ ​ +2

2 λ ∥LF∥ ​ with W( ) =(k)
2
2 F(k−1) L LH

where  is selected from the following L-curveλ(k)

L ​(λ ) =c
(k) (∥X−HF(λ )∥ ​, ∥LF(λ )∥ ​)(k)

2
(k)

2

When the iterative process has converged, one has

∥L ∥ ​ ≈F 2
2 ∥ ∥ ​F q

q
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Matlab

function [F, lamb] = lq_reg(H, X, q, tol)



% Initialization

N = size(H, 2)

Hh = H'*H; % For speed

Hx = H'*X;



L = eye(N)

lamb = lcurve(H, L, X);

F = (Hh + lamb*L)\(Hx);

F0 = F; % For convergence monitoring



% Iteration

crit = 1; % Convergence criterion

while crit > tol

	 W = weight(F, q);

	 L = sqrt(W) % W = L'*L;

	 lamb = lcurve(H, L, X);

	 F = (Hh + lamb*W)\Hx;



	 % Convergence monitoring

	 crit = norm(F - F0, 1)/norm(F0, 1);
	 F0 = F;

end

Python

def lq_reg(H, X, q, tol):



	 # Initialization

	 N = H.shape[1]

	 Hh = H.T.conj() @ H # For speed

	 Hx = H.T.conj() @ X



	 L = np.eye(N)

	 lamb = lcurve(H, L, X)

	 F = spl.solve(Hh + lamb*L, Hx)

	 F0 = F # For convergence monitoring



	 # Iteration

	 crit = 1 # Convergence criterion

	 while crit > tol:

	 	 W = weight(F, q)

	 	 L = np.sqrt(W) # W = L.T.conj()*L;

	 	 lamb = lcurve(H, L, X)

	 	 F = spl.solve(Hh + lamb*W, Hx)



	 	 # Convergence monitoring

	 	 crit = spl.norm(F - F0, 1)/spl.norm(F0, 1)

	 	 F0 = F



	 return F, lamb

-regularization Practical implementationℓ ​q

24
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-regularization Sparse regularizationℓ ​q
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-regularization Sparse regularizationℓ ​q

q = 1
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Summary of regularization strategies

🗸 Efficient approaches

🗸 Easy implementation of resolution algorithms

But...

∼ Require external procedures to determine the regularization parameter

∼ Provide only point estimate⇒No uncertainty quantification of identified solutions

Possible solution ?

26
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Summary of regularization strategies

🗸 Efficient approaches

🗸 Easy implementation of resolution algorithms

But...

∼ Require external procedures to determine the regularization parameter

∼ Provide only point estimate⇒No uncertainty quantification of identified solutions

Exploit the Bayesian paradigm !
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Preliminaries  Bayes' rule (1763 - posthumously)

For two events  and 

 - Posterior probability distribution

 - Likelihood function

 - Prior probability distribution

A B

p(A∣B) ∝ p(B∣A) p(A)

p(A∣B)
probability of  given a realization of A B

p(B∣A)
probability of  given a realization of B A

p(A)
probability of  without any given conditionsA

The Bayes' rule updates our prior belief in  considering new

information brought by an event 

A

B
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Minimal formulation  Basics

When choosing  and A = F B = X

p(F∣X) ∝ p(X∣F) p(F)

How to choose  and  ?p(X∣F) p(F)

30
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Minimal formulation  Likelihood function

The likelihood function describes the probability of the observed data as a function of the parameters of the chosen statistical model. Given our linear

model , it reflects the uncertainty related to vibration measurements, i.e. related to measurement noiseX = HF+N

Main assumption

The noise is due to multiple independent causes⇒Gaussian white noise

p(X∣F, τ ​) =n N ​(X∣HF, τ ​ I)c n
−1

31
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Minimal formulation  Likelihood function

The likelihood function describes the probability of the observed data as a function of the parameters of the chosen statistical model. Given our linear

model , it reflects the uncertainty related to vibration measurements, i.e. related to measurement noiseX = HF+N

Main assumption

The noise is due to multiple independent causes⇒Gaussian white noise

p(X∣F, τ ​) =n N ​(X∣HF, τ ​ I)c n
−1

p(X∣F, τ ​) =n ​ exp −τ ​∥X−HF∥ ​(
π

τ ​n
)
N

( n 2
2)

 - Noise precision (

 - Number of measurement points

τ ​n τ ​ >n 0)

N

31
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Minimal formulation  Prior probability distribution

The prior probability distribution reflects the uncertainty related to  and can be seen as a measure of our prior knowledge on the sources to identifyF

Main assumption

 is a real random vector, whose components are i.i.d. random variables following a Generalized Gaussian distributionF

p(F∣τ ​, q) =f ​ N ​(F ​∣τ ​, q)
i=1

∏
M

g i f

32
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Minimal formulation  Prior probability distribution

The prior probability distribution reflects the uncertainty related to  and can be seen as a measure of our prior knowledge on the sources to identifyF

Main assumption

 is a real random vector, whose components are i.i.d. random variables following a Generalized Gaussian distributionF

p(F∣τ ​, q) =f ​ τ ​exp −τ ​∥F∥ ​(
2Γ(1/q)

q
)
M

f

​

q
M

( f q
q)

 - Shape parameter of the distribution ( )

 - Scale parameter of the distribution ( )

 - Gamma function

 - Number of reconstruction points

q q > 0

τ ​f τ ​ >f 0

Γ(x)

M

32
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Deterministic quantities Stochastic quantities

Minimal formulation  Overview

p(F∣X, τ ​, τ ​, q) ∝n f p(X∣F, τ ​) p(F∣τ ​, q)n f

Possible exploitations

MAP estimation - Optimization

Uncertainty quantification - Sampling

33
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Minimal formulation  MAP estimation

The MAP estimation consists in finding the most probable excitation field  given the available data , the precision parameters ( ) and the shape

parameter 

F X τ ​, τ ​n f

q

=F ​ p(F∣X, τ ​, τ ​, q)
F

argmax n f

34
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Minimal formulation  MAP estimation

The MAP estimation consists in finding the most probable excitation field  given the available data , the precision parameters ( ) and the shape

parameter 

F X τ ​, τ ​n f

q

=F ​ −
F

argmin log[p(X∣F, τ ​)] −n log[p(F∣τ ​, q)]f

34
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Minimal formulation  MAP estimation

The MAP estimation consists in finding the most probable excitation field  given the available data , the precision parameters ( ) and the shape

parameter 

F X τ ​, τ ​n f

q

=F ​ ∥X−
F

argmin HF∥ ​ +2
2 λ∥F∥ ​ with λ =q

q
​

τ ​n

τ ​f

MAP estimation -regularization !≡ ℓ ​q

34
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Minimal formulation  Uncertainty quantification

Idea for posterior sampling  Transform the Generalized Gaussian into a multivariate Gaussian distribution

where  is a weigthing depending on  and 

p(F∣τ ​, q) ∝f exp(−τ ​∥LF∥ ​)f 2
2

L L =H W F q

In doing so, one has

where  and 

​ ​

p(F∣X) ∝ exp(−τ ​∥X−HF∥ ​ − τ ​∥LF∥ ​)n 2
2

f 2
2

∝ N ​(F∣μ ​,Σ ​)c F F

μ ​ =F τ ​Σ ​H Xn F
H Σ ​ =F (τ ​H H+n

H τ ​W)f
−1

Drawing samples

F =(k) μ ​ +F Sz with SS =(k) H Σ ​ and z ∼F
(k) N ​(z ∣0, I)c

(k)

Properties of Gaussian distributions

35
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Minimal formulation  Uncertainty quantification

Estimation of  and 

 is the solution of the -regularization ⇒ After convergence of the iterative process, one obtains ,  and 

τ ​n τ ​f

μ ​F ℓ ​q μ ​F W λ

From these quantities, the most probable values of  and  given the data are computed such thatτ ​n τ ​f

( ​, ​) =τn τf ​ p(τ ​, τ ​∣X)
(τ ​,τ ​)n f

argmax n f

36
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Minimal formulation  Uncertainty quantification

Estimation of  and 

 is the solution of the -regularization ⇒ After convergence of the iterative process, one obtains ,  and 

τ ​n τ ​f

μ ​F ℓ ​q μ ​F W λ

From these quantities, the most probable values of  and  given the data are computed such thatτ ​n τ ​f

​ =τf ​ and ​ =
X (HW H + λI) XH −1 H −1

N
τn ​

λ

​τf

Proof

36
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Minimal formulation  Summary

🗸 MAP is equivalent to -regularization

🗸 Easy implementation of uncertainty quantification

ℓ ​q

Provided that...

∼ External procedures is implemented to estimate the precision parameters  and 

∼ The shape parameter  is known a priori

τ ​n τ ​f

q

Need for a more comprehensive formulation

38
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Complete formulation  Basics

Choosing a priori relevant values for ,  and  is far from an easy task for non-experienced users ⇒ Infer them !τ ​n τ ​f q

Main assumption ,  and  are independent random variablesτ ​n τ ​f q

p(F, τ ​, τ ​, q∣X) ∝n f p(X∣F, τ ​) p(F∣τ ​, q) p(τ ​) p(τ ​) p(q)n f n f

 - Prior distrubution on the precision parameter 

 - Prior distribution on the shape parameter 

p(τ) τ

p(q) q

How to choose  and  ?p(τ) p(q)

39
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Complete formulation  Prior distribution  - Gamma distribution

 - Scale parameter

 - Shape parameter

p(τ)

p(τ ∣α,β) = G(τ ∣α,β) = ​τ exp(−βτ) with α >
Γ(α)
βα α−1 0, β > 0

α

β

This choice is made for mathematical convenience (conjugate prior), but it does not reflect any real prior information on the precision parameters, except

their positiveness

➥ Prior distribution on  should be as minimally informative as possible (flat prior). For this reason,  and τ α = 1 β = 10−18

40
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Complete formulation  Prior distribution  - Truncated Gamma distribution

 - Truncation function, defined such that

 - Lower incomplete Gamma function

p(q)

p(q∣α ​,β ​, l ​,u ​) =q q b b ​ G(q∣α ​,β ​)I ​(q)
γ(α ​,β ​u ​) − γ(α ​,β ​l ​)q q b q q b

Γ(α ​)q
q q [l ​,u ​]b b

I ​(q)[l ​,u ​]b b

I ​(q) =[l ​,u ​]b b
​ ​{

1
0

if q ∈ [l ​,u ​]b b

otherwise

γ(s,x)

Requirements

Expert knowledge⟹  and 

Weakly informative distribution ⟹  and 

l ​ =b 0.05 u ​ =b 2.05

α ​ =q 1 β ​ =q 10−18

41
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Deterministic quantities Stochastic quantities

Complete formulation Overview

​ ​

p(X∣F, τ ​) p(F∣τ ​,n f

p(F, τ ​, τ ​, q∣X) ∝n f

q) p(τ ​∣α ​,β ​) p(τ ​∣α ​,β ​) p(q∣α ​,β ​)n n n f f f q q

Possible exploitations

MAP estimation - Optimization

Uncertainty quantification - Sampling
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Complete formulation MAP estimation

The MAP estimate of the complete formulation is given by

( , ​, ​, ​) =F τn τn q ​ p(F, τ ​, τ ​, q∣X)
F,τ ​,τ ​,qn f

argmax n f

The solution of the previous problem can be found by applying the first-order optimality condition to the dual minimization problem. An alternative, but

equivalent, way of solving this problem consists in maximizing the full conditional probability distributions associated to each parameter

q

τf

τn

F

= ​ p(q∣X,F, τ ​, τ ​)
q

argmax n f

= ​ p(τ ​∣X,F, τ ​, q)
τ ​f

argmax f n

= ​ p(τ ​∣X,F, τ ​, q)
τ ​n

argmax n f

= ​ p(F∣X, τ ​, τ ​, q)
F

argmax n f
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Complete formulation MAP estimation

The MAP estimate of the complete formulation is given by

( , ​, ​, ​) =F τn τn q ​ p(F, τ ​, τ ​, q∣X)
F,τ ​,τ ​,qn f

argmax n f

The solution of the previous problem can be found by applying the first-order optimality condition to the dual minimization problem. An alternative, but

equivalent, way of solving this problem consists in maximizing the full conditional probability distributions associated to each parameter

​ ​

​q

​τf

​τn

F

= ​ f(q∣ , ​)
q

argmin F τf

= ​

​(β ​ + ∥ ∥ ​)q f F
​q
​q

M + ​(α ​ − 1)q f

= ​

β ​ + ∥X−H ∥ ​n F 2
2

N + α ​ − 1n

= ​ ∥X−HF∥ ​ + λ∥F∥ ​

F
argmin 2

2
​q
​q

where  and f(q∣F, τ ​) =f M log Γ(1/q) − ​ log ​ −
q
M τf [M + α ​ −q 1] log q + β ​ q +q ​∥ ∥ ​τf F q

q λ = ​/ ​τf τn
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Complete formulation MAP estimation - Iterative resolution

Initialization -regularization  + Estimation of  from ℓ ​2 ( ,λ , ​ = 2)F(0) (0) q(0) τ ​f
(0)

λ(0)

Iteration While convergence is not reached do

​ ​

​q(k)

​τf
(k)

​τn
(k)

F(k)

= ​ f(q∣ , ​)
q

argmin F(k−1) τf
(k−1)

= ​

​ (β ​ + ∥ ∥ ​)q(k)
f F(k−1)

​q(k)
​q(k)

M + ​ (α ​ − 1)q(k)
f

= ​

β ​ + ∥X−H ∥ ​n F(k−1)
2
2

N + α ​ − 1n

= ​ ∥X−HF∥ ​ + λ ∥F∥ ​

F
argmin 2

2 (k)
​q(k)
​q(k)

Convergence monitoring δ = ∥ −F(k) ∥ ​/∥ ∥ ​F(k−1)
1 F(k−1)

1
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Complete formulation MAP estimation - Application
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Complete formulation Uncertainty quantification - MCMC

Markov Chain Monte Carlo (MCMC) is a class of algorithms that produce sequences of random samples converging to a target distribution for which direct

sampling is difficult

Here, because the full conditional probability distributions are available, a Gibbs sampler (particular case of MH sampler) can be implemented

p(q∣X,F, τ ​, τ ​)n f

p(τ ​∣X,F, τ ​, q)f n

p(τ ​∣X,F, τ ​, q)n f

p(F∣X, τ ​, τ ​, q)n f

∝ ​q exp(−β ​ q − τ ​∥F∥ ​)I ​

Γ(1/q)

τ ​f

M/q
M+α ​−1q

q f q
q

[l ​,u ​]b b

∝ G(τ ​∣α ​ + M/q,β ​ + ∥F∥ ​)f f f q
q

∝ G(τ ​∣α ​ + N ,β ​ + ∥X−HF∥ ​)n n n 2
2

∝ exp(−τ ​∥X−HF∥ ​ − τ ​∥F∥ ​)n 2
2

f q
q

Build a markov chain 

for each parameter to compute statistics
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Complete formulation Uncertainty quantification - Gibbs sampling

General scheme

1. Set  and initialize , ,  and k = 0 q(0) τ ​n
(0)

τ ​f
(0) F(0)

2. Draw  samples from full conditional distributionsN ​s

for

Draw 

Draw 

Draw 

Draw 

end for

k = 1 : N ​s

q ∼(k) p(q∣X,F , τ ​, τ ​)(k−1)
n
(k−1)

f
(k−1)

τ ​ ∼f

(k)
p(τ ​∣X,F , τ ​, q )f

(k−1)
n
(k−1) (k)

τ ​ ∼n
(k)

p(τ ​∣X,F , τ ​, q )n
(k−1)

f

(k) (k)

F ∼(k) p(F∣X, τ ​, τ ​, q )n
(k)

f
(k) (k)

3. Monitor the convergence (stationarity) of the Markov chains
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Complete formulation Uncertainty quantification - Implementation

Initialization

-regularization  + Estimation of  and  from 

MAP estimate 

ℓ ​2 (F ,λ , q )(0) (0) (0) τ ​n
(0)

τ ​f

(0)
λ(0)

(F , τ ​, τ ​, q )(0)
f
(0)

n
(0) (0)

Drawing samples

1.  - Non-standard probability distribution ⇒ Instance of MH sampler (or HMC, ...)p(q∣X,F , τ ​, τ ​)(k−1)
n
(k−1)

f
(k−1)

2.  - Gamma distribution⇒ RNG implemented in standard programming languagesp(τ ​∣X,F , τ ​, q )i
(k−1)

j
(k−1) (k)

3.  - Multivariate Gaussian-like distribution⇒ Procedure defined for the min. formulationp(F∣X, τ ​, τ ​, q )n
(k)

f
(k) (k)

Convergence diagnostic

Burn-in period - Number of samples to discard at the beginning of the chains (period before convergence)

Total length - Number of samples required to compute statistics

Available diagnotics - Raftery-Lewis, Geweke (one long chain), Gelman-Rubin (multiple chains) and more
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Complete formulation Uncertainty quantification - Application

Initialization : -regularizationℓ ​2 Initialization : MAP estimation
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Complete formulation Uncertainty quantification - Application

Initialization : -regularization

Burn-in period

ℓ ​2 Initialization : MAP estimation
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Complete formulation Uncertainty quantification - Application

DensityDensity
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Force amplitudeForce amplitudeqq
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Complete formulation Uncertainty quantification - Application
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Complete formulation Uncertainty quantification - Application

DensityDensity
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Complete formulation  Summary

🗸 Automatic identification of all the parameters

🗸 Robust identification of the excitation field

Can we do better or at least different ?

Yes, of course !
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Relevant Vector Regression  Basics

RVR is a particular Bayesian approach for which the prior probability distribution over  is such thatF

p(F) = ​ N (F ​∣0, τ ​) with N (F ​∣0, τ ​) =
i=1

∏
M

i fi
−1

i fi
−1 exp(− ​ ∣F ​∣ )​

2π
τ ​fi

2
τ ​fi

i
2

The corresponding Bayesian formulation is expressed as

p(F, τ ​, τ ​∣X) ∝n f ​i
p(X∣F, τ ​) ​p(F ​∣τ ​) p(τ ​) with p(τ ​) =n

i=1

∏
M

i f ​i fi fi G(τ ​∣α ​,β ​)f ​i fi fi

Main features

Implementation of MAP estimation and UQ via Gibbs sampling require minor changes of the algorithms described previously

More parameters needs to be infered (  for CBF and  for RVR)M + 3 2M + 1

Computationally more efficient than CBF
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Optimization
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Relevant Vector Regression  Why does it work so well ?

xx

f(
x
)

f(
x
)

f(x) = exp(−τ x /2)2

-5 0 5
0

0.2

0.4
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0.8

1

q = 2

q = 1

q = 0.5

xx

f(
x
)

f(
x
)

f(x) = exp(−x /q)q
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Relevant Vector Regression  Why does it work so well ?

xx

f(
x
)

f(
x
)

f(x) = exp(−τ x /2)2

The parameters  and  play a similar role

➥ The larger the value of , the closer the value of  is to 0

τ ​fi q

τ ​fi F ​i
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Relevant Vector Regression  Why does it work so well ?

xx

f(
x
)

f(
x
)

f(x) = exp(−τ x /2)2
Optimization
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Reconstruct
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Piecewise constant excitation  Objective
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Piecewise constant excitation  Naive application

None of the strategies described previously is able to properly

reconstruct the excitation field !

What to do ?

Promote piecewise constant solution !
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Piecewise constant excitation  Intuition

The first derivative of the excitation field is sparse

➥ Promote the sparsity of ​∂x
∂F(x)
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Piecewise constant excitation  Implementation

Using the discretized first-order derivative operator D

D = ​ ​ ​ ​ ​ ​ ​ ​ ​

Δx

1
1 −1

1 −1
⋱ ⋱

1 −1 (M−1)×M

Complete Bayesian formulation Relevant vector regression

One has the following prior probability distributions

p(F∣τ ​, q) ∝f exp(−τ ​∥DF∥ ​)f q
q

p(F ​∣τ ​) ∝i fj exp(− ​ ∣D ​F ​∣ )
2
τ ​fj

ji i
2
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Piecewise constant excitation  Application

CBF - Optimization
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Piecewise constant excitation  Application

CBF - UQ
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Conclusions
The Bayesian framework provides an efficient and convenient way to combine probabilistic and mechanical data

It allows exploiting one's prior knowledge of the sources to identify

It includes an internal mechanism of regularization

No external procedures are required to infer or optimize all the parameters of the model

Other applications in force reconstruction

Group regularization - e.g. Identification of external forces and BC on plates

Mixed-norm regularization - e.g. Identification of space-frequency/time features of excitation sources

Application in other fields

Image/signal processing (e.g. denoising)

Acoustics (e.g. fault diagnosis, source reconstruction)

Material science, Structural mechanics (e.g. parameter estimation, OMA, cracks detection)

Computer science (e.g. neural networks, bayesian programming)

Thermal science, Econometrics, Epidemiology, ...
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Only the sky is the limit !

Or, maybe, the quantity/quality of available data, 

the complexity of the problem, 

the computing power/resources, ...
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Force reconstruction

A Bayesian perspective

https://github.com/maucejo/MOIRA_Workshop_BFR
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Well-posed problem in the sense of Hadamard (1902)

A solution exist

The solution is unique

The solution changes continuously with changes in the data

Back to presentation
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Well-posed problem in the sense of Hadamard (1902)

🗸A solution exist

🗸The solution is unique

✗ The solution changes continuously with changes in the data

Back to presentation
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Well-posed problem in the sense of Hadamard (1902)

🗸A solution exist

🗸The solution is unique

✗ The solution changes continuously with changes in the data

➥ The problem considered in this lecture is ill-posed

Back to presentation
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-regularization Filter factor analysis at convergence

where  are the singular values of  and  are the singular values of 

Generalized SVD

Properties of GSVD

ℓ ​q

=F ​f ​ ​ with f ​ =
i=1

∑
21

i
σ ​i

v ​u ​Xi i
H

i ​

γ ​ + λi
2
γ ​i

2

γ ​i (H,L) σ ​i H

H = UΣY and L =H VΩYH

Σ Σ+H Ω Ω =H I and γ ​ =i ​

ω ​i

σ ​i
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q = 1

ff
ii

ff
ii 
/σ/σ

ii

11 /σ/σ
ii

q = 0.5

ff
ii

ff
ii 
/σ/σ

ii

11 /σ/σ
ii

-regularization Filter factor analysis at convergenceℓ ​q

Back to presentation
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Properties of Gaussian distributions  Marginal and Conditional distributions

Let's consider two random vectors,  and , such that

From these distributions, the marginal and conditional distributions,  and  are given by

with 

x y

p(x) = N ​(x∣μ ​,Σ ​) and p(y∣x) =c x x N ​(y∣Ax+c b,Σ ​)y

p(y) p(x∣y)

p(y)

p(x∣y)

= N ​(y∣Aμ ​ + b,AΣ ​A +Σ ​)c x x
H

y

= N ​(x∣Σ{A Σ ​(y − b) +Σ ​μ ​},Σ)c
H

y
−1

x
−1

x

Σ = (A Σ ​A+H
y
−1 Σ ​)x

−1 −1
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Drawing samples from multivariate Gaussian distribution

Let's consider a random Gaussian vector  such that

By assuming that , one has

where  and 

Consequently, to draw samples from a multivariate Gaussian distribution with mean  and covariance matrix , it is enough to compute

x

p(x) = N ​(x∣μ ​,Σ ​)c x x

Σ ​ =x SSH

​ ​

exp[−(x− μ ​) Σ ​(x− μ ​)]x
H

x
−1

x = exp[−{S (x− μ ​)} {S (x− μ ​)}]−1
x

H −1
x

= exp[−z z]H

z = S (x−−1 μ ​)x z ∼ N ​(z∣0, I)c

μ ​x Σ ​x

x =(k) μ ​ +x Sz with SS =(k) H Σ ​ and z ∼x
(k) N ​(z ∣0, I)c

(k)

Back to presentation
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Calculation of  and 

By using the Bayes' rule, the conditional distribution  is expressed as

Assuming that , one has

Using the fact that all the conditional distributions are Gaussian, one establishes that

The MAP estimate is found by solving

τ ​n τ ​f

p(τ ​, τ ​∣X)n f

p(τ ​, τ ​∣X) ∝n f p(X∣τ ​, τ ​) p(τ ​) p(τ ​)n f n f

p(τ ​) =n p(τ ​) ∝f 1

p(τ ​, τ ​∣X) ∝n f p(X∣τ ​, τ ​) =n f ​ p(X∣F, τ ​) p(F∣W, τ ​)dF∫
F

n f

p(τ ​, τ ​∣X) ∝n f N ​(X∣0,HW H /τ +c
−1 H

f I/τ ​)n

( ​, ​) =τn τf ​ −
(τ ​,τ ​)n f

argmin log[p(τ ​, τ ​∣X)]n f

71

Generalities State of the art BFR Extensions



By noting , it comes

By applying the first-order optimality condition, one finds

λ = τ ​/τ ​n f

( ​, ​) =τn τf ​ τ ​X (HW H +
(τ ​,τ ​)n f

argmin f
H −1 H λI) X−−1

N log τ ​ +f log ∣HW H +−1 H λI∣

​ =τf ​

X (HW H + λI) XH −1 H −1
N

Back to presentation
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