Force reconstruction

A Bayesian perspective

Mathieu AUCEJO

Thursday 13 ${ }^{\text {th }}$ October 2022

Who am I?

- Associate professor
- @ Le Cnam

le cnam

Who am I?

- Associate professor
- @ Le Cnam
- @ LMSSC

凹 mathieu.aucejo@lecnam.net

Outline

(1) Generalities
(2) State of the art

3 Bayesian Force regularization
(4) Extensions

Outline

(1) Generalities

(2) State of the art

3 Bayesian Force regularization
4. Extensions

Definition

Force identification is an inverse problem aiming at characterizing some features of the sources exciting a mechanical structure

Types of problems

1. Localization

Definition

Force identification is an inverse problem aiming at characterizing some features of the sources exciting a mechanical structure

Types of problems

1. Localization
2. Quantification

Known source location

Vibration sensor
Definition

Force identification is an inverse problem aiming at characterizing some features of the sources exciting a mechanical structure

Types of problems

1. Localization

2. Quantification
3. Reconstruction

Definition

Force identification is an inverse problem aiming at characterizing some features of the sources exciting a mechanical structure

Types of problems

1. Localization

2. Quantification
3. Reconstruction
4. Separation / Classification

Definition

Force identification is an inverse problem aiming at characterizing some features of the sources exciting a mechanical structure

Types of problems

1. Localization

2. Quantification
3. Reconstruction
4. Separation / Classification

Restriction

In this lecture, we restrict ourselves to reconstruction problems expressed as a linear system

$$
\mathbf{X}=\mathbf{H F}+\mathbf{N}
$$

- \mathbf{X} is the measured vibration field
- H describes the dynamic behavior of the structure (LTI assumption)
- \mathbf{F} is the excitation field to reconstruct
- \mathbf{N} is the noise corrupting the vibration data
\Rightarrow This talk will not cover methods such as Kalman Filters, Neural Networks, Virtual Fields,

Outline

1) Generalities
(2) State of the art

3 Bayesian Force regularization
4 Extensions

Leading example Free-free steel beam in the frequency domain

- Unit harmonic point force @ 350 Hz
- Measurement noise level-20 dB
- Data generation - \triangle Inverse crime
- X - Modal expansion (8 modes, $\mathrm{f}_{8} \approx 992 \mathrm{~Hz}$)
- H - FEM (20 beam elements)
- Colocated reconstruction configuration
- Equal-determined inverse problem

Main objective

Reconstruct

From

Naive reconstruction

$$
\widehat{\mathbf{F}}=\mathbf{H}^{-1} \mathbf{X}
$$

What's wrong?

- Formally, one has:

$$
\widehat{\mathbf{F}}=\sum_{i=1}^{21} \frac{\mathbf{v}_{i} \mathbf{u}_{i}^{H} \mathbf{X}}{\sigma_{i}}
$$

Naive reconstruction

$$
\widehat{\mathbf{F}}=\mathbf{H}^{-1} \mathbf{X}
$$

What's wrong?

- Formally, one has:

$$
\widehat{\mathbf{F}}=\mathbf{F}_{\text {true }}+\sum_{i=1}^{21} \frac{\mathbf{v}_{i} \mathbf{u}_{i}^{H} \mathbf{N}}{\sigma_{i}}
$$

- But \mathbf{H} is ill-conditioned $-\kappa(\mathbf{H}) \approx 1300$

Here $\sigma_{21} \approx 2.5 \cdot 10^{-2}$
\Rightarrow The noise is amplified by the smallest singular values
\Rightarrow Ill-posed inverse problems in Hadamard sense

Ordinary Least Squares (OLS)

Idea Find $\widehat{\mathbf{F}}$ minimizing the sum of the squared errors

$$
\widehat{\mathbf{F}}=\underset{\mathbf{F}}{\operatorname{argmin}}\|\mathbf{X}-\mathbf{H F}\|_{2}^{2}
$$

- Formally, one has:

$$
\widehat{\mathbf{F}}=\left(\mathbf{H}^{H} \mathbf{H}\right)^{-1} \mathbf{H}^{H} \mathbf{X}
$$

- But using the SVD

$$
\widehat{\mathbf{F}}=\sum_{i=1}^{21} \frac{\mathbf{v}_{i} \mathbf{u}_{i}^{H} \mathbf{X}}{\sigma_{i}}
$$

\Rightarrow Same as the naive approach! (equal-det. problems)
\Rightarrow Useful for over/under-determined problems

Truncated SVD

Idea Filter the smallest singular values of \mathbf{H}
In practice Retain the first \mathbf{M} singular values $(\mathbf{M}<\mathbf{2 1})$ such that

$$
\widehat{\mathbf{F}}=\sum_{i=1}^{M} \frac{\mathbf{v}_{i} \mathbf{u}_{i}^{H} \mathbf{X}}{\sigma_{i}}
$$

How to select M?

One possible solution L-curve principle

$$
L_{c}(M)=\left(\|\mathbf{X}-\mathbf{H}(M) \widehat{\mathbf{F}}\|_{2},\|\widehat{\mathbf{F}}\|_{2}\right) \text { with } \mathbf{H}(M)=\sum_{i=1}^{M} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{H}
$$

L-curve

One possible solution L-curve principle

$$
\widehat{M}=\underset{M}{\operatorname{argmax}} K[L(M)]
$$

L-curve

Curvature

Application

- Low pass filtering effect \Rightarrow Smooth solution
\Rightarrow Not adapted to sparse sources

What to do?

Constrain the space of admissible solutions!

ℓ_{2}-regularization Tikhonov regularization

$$
\widehat{\mathbf{F}}=\underset{\mathbf{F}}{\operatorname{argmin}}\|\mathbf{X}-\mathbf{H F}\|_{2}^{2} \text { subject to }\|\mathbf{F}\|_{2}^{2} \leq \tau
$$

ℓ_{2}-regularization Tikhonov regularization

$$
\widehat{\mathbf{F}}=\underset{\mathbf{F}}{\operatorname{argmin}}\|\mathbf{X}-\mathbf{H F}\|_{2}^{2}+\lambda\|\mathbf{F}\|_{2}^{2}
$$

How to select $\boldsymbol{\lambda}$?

In practice Many methods are available

- Morozov's discrepancy principle
- Generalized Cross Validation (GCV)
- Reginska's method
- Bayesian Estimator
- L-curve principle
-

ℓ_{2}-regularization Tikhonov regularization

$$
\widehat{\mathbf{F}}=\underset{\mathbf{F}}{\operatorname{argmin}}\|\mathbf{X}-\mathbf{H F}\|_{2}^{2}+\lambda\|\mathbf{F}\|_{2}^{2}
$$

How to select λ ?

In practice Many methods are available

- Morozov's discrepancy principle
- Generalized Cross Validation (GCV)
- Reginska's method
- Bayesian Estimator
- L-curve principle
-

ℓ_{2}-regularization Application

$$
\widehat{\mathbf{F}}=\left(\mathbf{H}^{H} \mathbf{H}+\lambda \mathbf{I}\right)^{-1} \mathbf{H}^{H} \mathbf{X}
$$

ℓ_{2}-regularization Application

$$
\widehat{\mathbf{F}}=\left(\mathbf{H}^{H} \mathbf{H}+\lambda \mathbf{I}\right)^{-1} \mathbf{H}^{H} \mathbf{X}
$$

Solution

- Low pass filtering effect \Rightarrow Smooth solution
\Rightarrow Not adapted to sparse sources

How to explain this result?

Filter factors Basics

$$
\widehat{\mathbf{F}}=\sum_{i=1}^{21} f_{i} \frac{\mathbf{v}_{i} \mathbf{u}_{i}^{H} \mathbf{X}}{\sigma_{i}}
$$

where f_{i} is the filter factor defined such that

$$
\begin{gathered}
\text { TSVD } \\
f_{i}= \begin{cases}1 & \text { for } i \leq M \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

$\boldsymbol{\ell}_{\mathbf{2}}$-regularization

$$
f_{i}=\frac{\sigma_{i}^{2}}{\sigma_{i}^{2}+\lambda}
$$

Filter factors In action

TSVD

ℓ_{2}-regularization

ℓ_{q}-regularization Generalities

$$
\widehat{\mathbf{F}}=\underset{\mathbf{F}}{\operatorname{argmin}}\|\mathbf{X}-\mathbf{H F}\|_{2}^{2}+\lambda\|\mathbf{F}\|_{q}^{q}
$$

- The smaller q is, the larger is the weight on small values of \mathbf{F}
- For large values of \mathbf{F}, the smaller q is, the smaller is the weight on these values
$\Rightarrow q \geq 2$ - Smooth solution
$\Rightarrow q \leq 1$ - Sparse solution
\triangle Non-convex minimization problem when $q<1$

ℓ_{q}-regularization Numerical resolution

The first-order optimality condition for the ℓ_{q}-regularization leads to

$$
\widehat{\mathbf{F}}=\left(\mathbf{H}^{H} \mathbf{H}+\lambda \mathbf{W}(\widehat{\mathbf{F}})\right)^{-1} \mathbf{H}^{H} \mathbf{X} \text { with } w_{i i}=\frac{q}{2}\left|\widehat{F_{i}}\right|^{q-2}
$$

\Rightarrow Implementation of an iterative process

$$
\widehat{\mathbf{F}}^{(k)}=\left(\mathbf{H}^{H} \mathbf{H}+\lambda^{(k)} \mathbf{W}\left(\widehat{\mathbf{F}}^{(k-1)}\right)\right)^{-1} \mathbf{H}^{H} \mathbf{X}
$$

ℓ_{q}-regularization Numerical resolution

The first-order optimality condition for the ℓ_{q}-regularization leads to

$$
\widehat{\mathbf{F}}=\left(\mathbf{H}^{H} \mathbf{H}+\lambda \mathbf{W}(\widehat{\mathbf{F}})\right)^{-1} \mathbf{H}^{H} \mathbf{X} \text { with } w_{i i}=\frac{q}{2}\left|\widehat{F}_{i}\right|^{q-2}
$$

\Rightarrow Implementation of an iterative process

$$
\widehat{\mathbf{F}}^{(k)}=\underset{\mathbf{F}}{\operatorname{argmin}}\|\mathbf{X}-\mathbf{H F}\|_{2}^{2}+\lambda^{(k)}\|\mathbf{L} \mathbf{F}\|_{2}^{2} \text { with } \mathbf{W}\left(\widehat{\mathbf{F}}^{(k-1)}\right)=\mathbf{L}^{H} \mathbf{L}
$$

where $\lambda^{(k)}$ is selected from the following L-curve

$$
L_{c}\left(\lambda^{(k)}\right)=\left(\left\|\mathbf{X}-\mathbf{H F}\left(\lambda^{(k)}\right)\right\|_{2},\left\|\mathbf{L F}\left(\lambda^{(k)}\right)\right\|_{2}\right)
$$

When the iterative process has converged, one has

$$
\|\mathbf{L} \widehat{\mathbf{F}}\|_{2}^{2} \approx\|\widehat{\mathbf{F}}\|_{q}^{q}
$$

ℓ_{q}-regularization Practical implementation

Matlab

```
```

function [F, lamb] = lq_reg(H, X, q, tol)

```
```

function [F, lamb] = lq_reg(H, X, q, tol)
N = size(H, 2)
N = size(H, 2)
Hh = H'*H; % For speed
Hh = H'*H; % For speed
Hx = H'*X;
Hx = H'*X;
L = eye(N)
L = eye(N)
lamb = lcurve(H, L, X);
lamb = lcurve(H, L, X);
F = (Hh + lamb*L)\(Hx);
F = (Hh + lamb*L)\(Hx);
F0 = F; % For convergence monitoring
F0 = F; % For convergence monitoring
Iteration
Iteration
crit = 1; % Convergence criterion
crit = 1; % Convergence criterion
while crit > tol
while crit > tol
W = weight(F, q);
W = weight(F, q);
L=sqrt(W) % W = L'*L
L=sqrt(W) % W = L'*L
L = sqrt(W) % W = L'*L; ;
L = sqrt(W) % W = L'*L; ;
F = (Hh + lamb*W)\Hx;
F = (Hh + lamb*W)\Hx;
Convergence monitoring
Convergence monitoring
crit = norm(F - F0, 1)/norm(F0, 1);
crit = norm(F - F0, 1)/norm(F0, 1);
F0 = F;
F0 = F;
end

```
end
```

```
= (Hh +
```

```
= (Hh +
```


ℓ_{q}-regularization Sparse regularization

ℓ_{q}-regularization Sparse regularization

Summary of regularization strategies

\checkmark Efficient approaches
\checkmark Easy implementation of resolution algorithms

But...
~ Require external procedures to determine the regularization parameter
\sim Provide only point estimate \Rightarrow No uncertainty quantification of identified solutions

Possible solution?

Summary of regularization strategies

\checkmark Efficient approaches
\checkmark Easy implementation of resolution algorithms

But...
\sim Require external procedures to determine the regularization parameter
\sim Provide only point estimate \Rightarrow No uncertainty quantification of identified solutions

Exploit the Bayesian paradigm !

Outline

(1) Generalities
(2) State of the art

3 Bayesian Force regularization
(4) Extensions

Preliminaries Bayes' rule (1763-posthumously)

For two events A and B

$$
p(A \mid B) \propto p(B \mid A) p(A)
$$

- $p(A \mid B)$ - Posterior probability distribution probability of A given a realization of B
- $p(B \mid A)$ - Likelihood function
probability of B given a realization of A
- $p(A)$ - Prior probability distribution probability of A without any given conditions

The Bayes' rule updates our prior belief in A considering new information brought by an event B

Minimal formulation Basics

When choosing $A=\mathbf{F}$ and $B=\mathbf{X}$
$p(\mathbf{F} \mid \mathbf{X}) \propto p(\mathbf{X} \mid \mathbf{F}) p(\mathbf{F})$

How to choose $p(\mathbf{X} \mid \mathbf{F})$ and $p(\mathbf{F})$?

Minimal formulation Likelihood function

The likelihood function describes the probability of the observed data as a function of the parameters of the chosen statistical model. Given our linear model $\mathbf{X}=\mathbf{H F}+\mathbf{N}$, it reflects the uncertainty related to vibration measurements, i.e. related to measurement noise

Main assumption

The noise is due to multiple independent causes \Rightarrow Gaussian white noise

$$
p\left(\mathbf{X} \mid \mathbf{F}, \tau_{n}\right)=\mathcal{N}_{c}\left(\mathbf{X} \mid \mathbf{H F}, \tau_{n}^{-1} \mathbf{I}\right)
$$

Minimal formulation Likelihood function

The likelihood function describes the probability of the observed data as a function of the parameters of the chosen statistical model. Given our linear model $\mathbf{X}=\mathbf{H F}+\mathbf{N}$, it reflects the uncertainty related to vibration measurements, i.e. related to measurement noise

Main assumption

The noise is due to multiple independent causes \Rightarrow Gaussian white noise

$$
p\left(\mathbf{X} \mid \mathbf{F}, \tau_{n}\right)=\left(\frac{\tau_{n}}{\pi}\right)^{N} \exp \left(-\tau_{n}\|\mathbf{X}-\mathbf{H F}\|_{2}^{2}\right)
$$

- τ_{n} - Noise precision $\left(\tau_{n}>0\right)$
- N - Number of measurement points

Minimal formulation Prior probability distribution

The prior probability distribution reflects the uncertainty related to \mathbf{F} and can be seen as a measure of our prior knowledge on the sources to identify

Main assumption

\mathbf{F} is a real random vector, whose components are i.i.d. random variables following a Generalized Gaussian distribution

$$
p\left(\mathbf{F} \mid \tau_{f}, q\right)=\prod_{i=1}^{M} \mathcal{N}_{g}\left(F_{i} \mid \tau_{f}, q\right)
$$

Minimal formulation Prior probability distribution

The prior probability distribution reflects the uncertainty related to \mathbf{F} and can be seen as a measure of our prior knowledge on the sources to identify

Main assumption

\mathbf{F} is a real random vector, whose components are i.i.d. random variables following a Generalized Gaussian distribution

$$
p\left(\mathbf{F} \mid \tau_{f}, q\right)=\left(\frac{q}{2 \Gamma(1 / q)}\right)^{M} \tau_{f}^{\frac{M}{q}} \exp \left(-\tau_{f}\|\mathbf{F}\|_{q}^{q}\right)
$$

- q - Shape parameter of the distribution $(q>0)$
- τ_{f} - Scale parameter of the distribution $\left(\tau_{f}>0\right)$
- $\Gamma(x)$ - Gamma function
- M - Number of reconstruction points

Minimal formulation Overview

$$
p\left(\mathbf{F} \mid \mathbf{X}, \tau_{n}, \tau_{f}, q\right) \propto p\left(\mathbf{X} \mid \mathbf{F}, \tau_{n}\right) p\left(\mathbf{F} \mid \tau_{f}, q\right)
$$

Possible exploitations

- MAP estimation - Optimization
- Uncertainty quantification - Sampling
Deterministic quantitiesStochastic quantities

Minimal formulation MAP estimation

The MAP estimation consists in finding the most probable excitation field \mathbf{F} given the available data \mathbf{X}, the precision parameters $\left(\tau_{n}, \tau_{f}\right)$ and the shape parameter q

$$
\widehat{\mathbf{F}}=\underset{\mathbf{F}}{\operatorname{argmax}} p\left(\mathbf{F} \mid \mathbf{X}, \tau_{n}, \tau_{f}, q\right)
$$

Minimal formulation MAP estimation

The MAP estimation consists in finding the most probable excitation field \mathbf{F} given the available data \mathbf{X}, the precision parameters ($\left.\tau_{n}, \tau_{f}\right)$ and the shape parameter q

$$
\widehat{\mathbf{F}}=\underset{\mathbf{F}}{\operatorname{argmax}} p\left(\mathbf{X} \mid \mathbf{F}, \tau_{n}\right) p\left(\mathbf{F} \mid \tau_{f}, q\right)
$$

Minimal formulation MAP estimation

The MAP estimation consists in finding the most probable excitation field \mathbf{F} given the available data \mathbf{X}, the precision parameters $\left(\tau_{n}, \tau_{f}\right)$ and the shape parameter q

$$
\widehat{\mathbf{F}}=\underset{\mathbf{F}}{\operatorname{argmin}}-\log \left[p\left(\mathbf{X} \mid \mathbf{F}, \tau_{n}\right)\right]-\log \left[p\left(\mathbf{F} \mid \tau_{f}, q\right)\right]
$$

Minimal formulation MAP estimation

The MAP estimation consists in finding the most probable excitation field \mathbf{F} given the available data \mathbf{X}, the precision parameters $\left(\tau_{n}, \tau_{f}\right)$ and the shape parameter q

$$
\widehat{\mathbf{F}}=\underset{\mathbf{F}}{\operatorname{argmin}}\|\mathbf{X}-\mathbf{H F}\|_{2}^{2}+\lambda\|\mathbf{F}\|_{q}^{q} \text { with } \lambda=\frac{\tau_{f}}{\tau_{n}}
$$

MAP estimation $\equiv \ell_{q}$-regularization!

Minimal formulation Uncertainty quantification

Idea for posterior sampling Transform the Generalized Gaussian into a multivariate Gaussian distribution

$$
p\left(\mathbf{F} \mid \tau_{f}, q\right) \propto \exp \left(-\tau_{f}\|\mathbf{L} \mathbf{F}\|_{2}^{2}\right)
$$

where $\mathbf{L}^{H} \mathbf{L}=\mathbf{W}$ is a weigthing depending on \mathbf{F} and q
In doing so, one has

$$
\begin{aligned}
p(\mathbf{F} \mid \mathbf{X}) & \propto \exp \left(-\tau_{n}\|\mathbf{X}-\mathbf{H F}\|_{2}^{2}-\tau_{f}\|\mathbf{L} \mathbf{F}\|_{2}^{2}\right) \\
& \propto \mathcal{N}_{c}\left(\mathbf{F} \mid \boldsymbol{\mu}_{\mathbf{F}}, \boldsymbol{\Sigma}_{\mathbf{F}}\right)
\end{aligned}
$$

where $\boldsymbol{\mu}_{\mathbf{F}}=\tau_{n} \boldsymbol{\Sigma}_{\mathbf{F}} \mathbf{H}^{H} \mathbf{X}$ and $\boldsymbol{\Sigma}_{\mathbf{F}}=\left(\tau_{n} \mathbf{H}^{H} \mathbf{H}+\tau_{f} \mathbf{W}\right)^{-1}$
Drawing samples

$$
\mathbf{F}^{(k)}=\boldsymbol{\mu}_{\mathbf{F}}+\mathbf{S} \mathbf{z}^{(k)} \text { with } \mathbf{S S}^{H}=\boldsymbol{\Sigma}_{\mathbf{F}} \text { and } \mathbf{z}^{(k)} \sim \mathcal{N}_{c}\left(\mathbf{z}^{(k)} \mid \mathbf{0}, \mathbf{I}\right)
$$

Minimal formulation Uncertainty quantification

Estimation of τ_{n} and τ_{f}

$\boldsymbol{\mu}_{\mathbf{F}}$ is the solution of the ℓ_{q}-regularization \Rightarrow After convergence of the iterative process, one obtains $\boldsymbol{\mu}_{\mathbf{F}}, \mathbf{W}$ and λ From these quantities, the most probable values of τ_{n} and τ_{f} given the data are computed such that

$$
\left(\widehat{\tau}_{n}, \widehat{\tau}_{f}\right)=\underset{\left(\tau_{n}, \tau_{f}\right)}{\operatorname{argmax}} p\left(\tau_{n}, \tau_{f} \mid \mathbf{X}\right)
$$

Minimal formulation Uncertainty quantification

Estimation of τ_{n} and τ_{f}

$\boldsymbol{\mu}_{\mathbf{F}}$ is the solution of the ℓ_{q}-regularization \Rightarrow After convergence of the iterative process, one obtains $\boldsymbol{\mu}_{\mathbf{F}}, \mathbf{W}$ and λ From these quantities, the most probable values of τ_{n} and τ_{f} given the data are computed such that

$$
\widehat{\tau}_{f}=\frac{N}{\mathbf{X}^{H}\left(\mathbf{H} \mathbf{W}^{-1} \mathbf{H}^{H}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}} \text { and } \widehat{\tau}_{n}=\frac{\widehat{\tau}_{f}}{\lambda}
$$

Minimal formulation Application

Minimal formulation Summary

\checkmark MAP is equivalent to ℓ_{q}-regularization
\checkmark Easy implementation of uncertainty quantification

Provided that.
\sim External procedures is implemented to estimate the precision parameters τ_{n} and τ_{f}
\sim The shape parameter q is known a priori

Need for a more comprehensive formulation

Complete formulation Basics

Choosing a priori relevant values for τ_{n}, τ_{f} and q is far from an easy task for non-experienced users \Rightarrow Infer them!
Main assumption $\boldsymbol{\tau}_{\boldsymbol{n}}, \boldsymbol{\tau}_{\boldsymbol{f}}$ and \boldsymbol{q} are independent random variables

$$
p\left(\mathbf{F}, \tau_{n}, \tau_{f}, q \mid \mathbf{X}\right) \propto p\left(\mathbf{X} \mid \mathbf{F}, \tau_{n}\right) p\left(\mathbf{F} \mid \tau_{f}, q\right) p\left(\tau_{n}\right) p\left(\tau_{f}\right) p(q)
$$

- $p(\tau)$ - Prior distrubution on the precision parameter τ
- $p(q)$ - Prior distribution on the shape parameter q

How to choose $p(\tau)$ and $p(q)$?

Complete formulation Prior distribution $p(\tau)$ - Gamma distribution

$$
p(\tau \mid \alpha, \beta)=\mathcal{G}(\tau \mid \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \tau^{\alpha-1} \exp (-\beta \tau) \text { with } \alpha>0, \beta>0
$$

- α - Scale parameter
- β - Shape parameter

This choice is made for mathematical convenience (conjugate prior), but it does not reflect any real prior information on the precision parameters, except their positiveness
\Rightarrow Prior distribution on τ should be as minimally informative as possible (flat prior). For this reason, $\alpha=1$ and $\beta=10^{-18}$

Complete formulation Prior distribution $p(q)$ - Truncated Gamma distribution

$$
p\left(q \mid \alpha_{q}, \beta_{q}, l_{b}, u_{b}\right)=\frac{\Gamma\left(\alpha_{q}\right)}{\gamma\left(\alpha_{q}, \beta_{q} u_{b}\right)-\gamma\left(\alpha_{q}, \beta_{q} l_{b}\right)} \mathcal{G}\left(q \mid \alpha_{q}, \beta_{q}\right) \mathbb{I}_{\left[b, u_{b}\right]}(q)
$$

- $\mathbb{I}_{\left[l_{b}, u_{b}\right]}(q)$ - Truncation function, defined such that

$$
\mathbb{I}_{\left[l_{b}, u_{b}\right]}(q)= \begin{cases}1 & \text { if } q \in\left[l_{b}, u_{b}\right] \\ 0 & \text { otherwise }\end{cases}
$$

- $\gamma(s, x)$ - Lower incomplete Gamma function

Requirements

- Expert knowledge $\Longrightarrow l_{b}=0.05$ and $u_{b}=2.05$
- Weakly informative distribution $\Longrightarrow \alpha_{q}=1$ and $\beta_{q}=10^{-18}$

Complete formulation Overview

$$
\begin{gathered}
p\left(\mathbf{F}, \tau_{n}, \tau_{f}, q \mid \mathbf{X}\right) \propto \\
p\left(\mathbf{X} \mid \mathbf{F}, \tau_{n}\right) p\left(\mathbf{F} \mid \tau_{f}, q\right) p\left(\tau_{n} \mid \alpha_{n}, \beta_{n}\right) p\left(\tau_{f} \mid \alpha_{f}, \beta_{f}\right) p\left(q \mid \alpha_{q}, \beta_{q}\right)
\end{gathered}
$$

Possible exploitations

- MAP estimation - Optimization
- Uncertainty quantification - Sampling
Deterministic quantities

Complete formulation MAP estimation

The MAP estimate of the complete formulation is given by

$$
\left(\widehat{\mathbf{F}}, \widehat{\tau}_{n}, \widehat{\tau}_{n}, \widehat{q}\right)=\underset{\mathbf{F}, \tau_{n}, \tau_{f}, q}{\operatorname{argmax}} p\left(\mathbf{F}, \tau_{n}, \tau_{f}, q \mid \mathbf{X}\right)
$$

The solution of the previous problem can be found by applying the first-order optimality condition to the dual minimization problem. An alternative, but equivalent, way of solving this problem consists in maximizing the full conditional probability distributions associated to each parameter

$$
\begin{aligned}
\hat{q} & =\underset{q}{\operatorname{argmax}} p\left(q \mid \mathbf{X}, \mathbf{F}, \tau_{n}, \tau_{f}\right) \\
\widehat{\tau}_{f} & =\underset{\tau_{f}}{\operatorname{argmax}} p\left(\tau_{f} \mid \mathbf{X}, \mathbf{F}, \tau_{n}, q\right) \\
\widehat{\tau}_{n} & =\underset{\tau_{n}}{\operatorname{argmax}} p\left(\tau_{n} \mid \mathbf{X}, \mathbf{F}, \tau_{f}, q\right) \\
\widehat{\mathbf{F}} & =\underset{\mathbf{F}}{\operatorname{argmax}} p\left(\mathbf{F} \mid \mathbf{X}, \tau_{n}, \tau_{f}, q\right)
\end{aligned}
$$

Complete formulation MAP estimation

The MAP estimate of the complete formulation is given by

$$
\left(\widehat{\mathbf{F}}, \widehat{\tau}_{n}, \widehat{\tau}_{n}, \widehat{q}\right)=\underset{\mathbf{F}, \tau_{n}, \tau_{f}, q}{\operatorname{argmax}} p\left(\mathbf{F}, \tau_{n}, \tau_{f}, q \mid \mathbf{X}\right)
$$

The solution of the previous problem can be found by applying the first-order optimality condition to the dual minimization problem. An alternative, but equivalent, way of solving this problem consists in maximizing the full conditional probability distributions associated to each parameter

$$
\begin{aligned}
\widehat{q} & =\underset{q}{\operatorname{argmin}} f\left(q \mid \widehat{\mathbf{F}}, \widehat{\tau}_{f}\right) \\
\widehat{\tau}_{f} & =\frac{M+\hat{q}\left(\alpha_{f}-1\right)}{\hat{q}\left(\beta_{f}+\|\widehat{\mathbf{F}}\|_{\hat{q}}^{\hat{q}}\right)} \\
\widehat{\tau}_{n} & =\frac{N+\alpha_{n}-1}{\beta_{n}+\|\mathbf{X}-\mathbf{H} \widehat{\mathbf{F}}\|_{2}^{2}} \\
\widehat{\mathbf{F}} & =\underset{\mathbf{F}}{\operatorname{argmin}}\|\mathbf{X}-\mathbf{H F}\|_{2}^{2}+\lambda\|\mathbf{F}\|_{\widehat{q}}^{\hat{q}}
\end{aligned}
$$

where $f\left(q \mid \mathbf{F}, \tau_{f}\right)=M \log \Gamma(1 / q)-\frac{M}{q} \log \widehat{\tau}_{f}-\left[M+\alpha_{q}-1\right] \log q+\beta_{q} q+\widehat{\tau}_{f}\|\widehat{\mathbf{F}}\|_{q}^{q}$ and $\lambda=\widehat{\tau}_{f} / \widehat{\tau}_{n}$

Complete formulation MAP estimation - Iterative resolution

Initialization $\quad \boldsymbol{\ell}_{\mathbf{2}}$-regularization $\left(\widehat{\mathbf{F}}^{(0)}, \boldsymbol{\lambda}^{(0)}, \widehat{\mathbf{q}}^{(\mathbf{0})}=\mathbf{2}\right)$ + Estimation of $\boldsymbol{\tau}_{f}^{(\mathbf{0})}$ from $\boldsymbol{\lambda}^{(\mathbf{0})}$
Iteration While convergence is not reached do

$$
\begin{aligned}
\hat{q}^{(k)} & =\underset{q}{\operatorname{argmin}} f\left(q \mid \widehat{\mathbf{F}}^{(k-1)}, \widehat{\tau}_{f}^{(k-1)}\right) \\
\widehat{\tau}_{f}^{(k)} & =\frac{M+\hat{q}^{(k)}\left(\alpha_{f}-1\right)}{\hat{q}^{(k)}\left(\beta_{f}+\left\|\widehat{\mathbf{F}}^{(k-1)}\right\|_{\hat{q}^{(k)}}^{\hat{q}^{(k)}}\right.} \\
\widehat{\tau}_{n}^{(k)} & =\frac{N+\alpha_{n}-1}{\beta_{n}+\left\|\mathbf{X}-\mathbf{H} \widehat{\mathbf{F}}^{(k-1)}\right\|_{2}^{2}} \\
\widehat{\mathbf{F}}^{(k)} & =\underset{\mathbf{F}}{\operatorname{argmin}}\|\mathbf{X}-\mathbf{H F}\|_{2}^{2}+\lambda^{(k)}\|\mathbf{F}\|_{\hat{q}^{(k)}}^{\hat{q}^{(k)}}
\end{aligned}
$$

Convergence monitoring $\delta=\left\|\widehat{\mathbf{F}}^{(\mathbf{k})}-\widehat{\mathbf{F}}^{(\mathbf{k}-1)}\right\|_{\mathbf{1}} /\left\|\widehat{\mathbf{F}}^{(\mathbf{k}-\mathbf{1})}\right\|_{\mathbf{1}}$

Complete formulation MAP estimation - Application

Complete formulation Uncertainty quantification - MCMC

Markov Chain Monte Carlo (MCMC) is a class of algorithms that produce sequences of random samples converging to a target distribution for which direct sampling is difficult

Here, because the full conditional probability distributions are available, a Gibbs sampler (particular case of MH sampler) can be implemented

$$
\begin{aligned}
& p\left(q \mid \mathbf{X}, \mathbf{F}, \tau_{n}, \tau_{f}\right) \propto \frac{\tau_{f}^{M / q}}{\Gamma(1 / q)} q^{M+\alpha_{q}-1} \exp \left(-\beta_{q} q-\tau_{f}\|\mathbf{F}\|_{q}^{q}\right) \mathbb{I}_{\left[l_{b}, u_{b}\right]} \\
& p\left(\tau_{f} \mid \mathbf{X}, \mathbf{F}, \tau_{n}, q\right) \propto \mathcal{G}\left(\tau_{f} \mid \alpha_{f}+M / q, \beta_{f}+\|\mathbf{F}\|_{q}^{q}\right) \\
& p\left(\tau_{n} \mid \mathbf{X}, \mathbf{F}, \tau_{f}, q\right) \propto \mathcal{G}\left(\tau_{n} \mid \alpha_{n}+N, \beta_{n}+\|\mathbf{X}-\mathbf{H F}\|_{2}^{2}\right) \\
& p\left(\mathbf{F} \mid \mathbf{X}, \tau_{n}, \tau_{f}, q\right) \propto \exp \left(-\tau_{n}\|\mathbf{X}-\mathbf{H F}\|_{2}^{2}-\tau_{f}\|\mathbf{F}\|_{q}^{q}\right)
\end{aligned}
$$

Build a markov chain for each parameter to compute statistics

Complete formulation Uncertainty quantification - Gibbs sampling

General scheme

$$
\begin{aligned}
& \text { 1. Set } k=0 \text { and initialize } q^{(0)}, \tau_{n}^{(0)}, \tau_{f}^{(0)} \text { and } \mathbf{F}^{(0)} \\
& \text { 2. Draw } N_{s} \text { samples from full conditional distributions } \\
& \text { for } k=1: N_{s} \\
& \text { - } \operatorname{Draw} q^{(k)} \sim p\left(q \mid \mathbf{X}, \mathbf{F}^{(k-1)}, \tau_{n}^{(k-1)}, \tau_{f}^{(k-1)}\right) \\
& \text { - } \operatorname{Draw} \tau_{f}^{(k)} \sim p\left(\tau_{f} \mid \mathbf{X}, \mathbf{F}^{(k-1)}, \tau_{n}^{(k-1)}, q^{(k)}\right) \\
& \text { - } \operatorname{Draw} \tau_{n}^{(k)} \sim p\left(\tau_{n} \mid \mathbf{X}, \mathbf{F}^{(k-1)}, \tau_{f}^{(k)}, q^{(k)}\right) \\
& \text { - Draw } \mathbf{F}^{(k)} \sim p\left(\mathbf{F} \mid \mathbf{X}, \tau_{n}^{(k)}, \tau_{f}^{(k)}, q^{(k)}\right) \\
& \text { end for }
\end{aligned}
$$

3. Monitor the convergence (stationarity) of the Markov chains

Complete formulation Uncertainty quantification - Implementation

Initialization

- ℓ_{2}-regularization $\left(\mathbf{F}^{(0)}, \lambda^{(0)}, q^{(0)}\right)+$ Estimation of $\tau_{n}^{(0)}$ and $\tau_{f}^{(0)}$ from $\lambda^{(0)}$
- MAP estimate $\left(\mathbf{F}^{(0)}, \tau_{f}^{(0)}, \tau_{n}^{(0)}, q^{(0)}\right)$

Drawing samples

1. $p\left(q \mid \mathbf{X}, \mathbf{F}^{(k-1)}, \tau_{n}^{(k-1)}, \tau_{f}^{(k-1)}\right)$ - Non-standard probability distribution \Rightarrow Instance of MH sampler (or HMC, ...)
2. $p\left(\tau_{i} \mid \mathbf{X}, \mathbf{F}^{(k-1)}, \tau_{j}^{(k-1)}, q^{(k)}\right)$ - Gamma distribution \Rightarrow RNG implemented in standard programming languages
3. $p\left(\mathbf{F} \mid \mathbf{X}, \tau_{n}^{(k)}, \tau_{f}^{(k)}, q^{(k)}\right)$ - Multivariate Gaussian-like distribution \Rightarrow Procedure defined for the min. formulation

Convergence diagnostic

- Burn-in period - Number of samples to discard at the beginning of the chains (period before convergence)
- Total length - Number of samples required to compute statistics
- Available diagnotics - Raftery-Lewis, Geweke (one long chain), Gelman-Rubin (multiple chains) and more

Complete formulation Uncertainty quantification - Application

Complete formulation Uncertainty quantification - Application

Initialization: ℓ_{2}-regularization

Initialization: MAP estimation

Complete formulation Uncertainty quantification - Application

	$\boldsymbol{F}_{\mathbf{0}}$	$\boldsymbol{\tau}_{\boldsymbol{n}}$	$\boldsymbol{\tau}_{\boldsymbol{f}}$	\boldsymbol{q}
Median	1.0481	30.50	16.12	0.240
Mean	1.0480	31.02	16.27	0.244
MAP	1.0472	29.21	16.09	0.230
95\% CI	$[1.0079 .1 .0876]$	$[19.08 .45 .77]$	$[12.66 .20 .76]$	$[0.141,0.368]$

Complete formulation Uncertainty quantification - Application

Complete formulation Uncertainty quantification - Application

Complete formulation Summary

\checkmark Automatic identification of all the parameters
\checkmark Robust identification of the excitation field

Can we do better or at least different?

Yes, of course!

Outline

(1) Generalities

12 State of the art
3 Bayesian Force regularization
(4) Extensions

Relevant Vector Regression Basics

RVR is a particular Bayesian approach for which the prior probability distribution over \mathbf{F} is such that

$$
p(\mathbf{F})=\prod_{i=1}^{M} \mathcal{N}\left(F_{i} \mid 0, \tau_{f i}^{-1}\right) \text { with } \mathcal{N}\left(F_{i} \mid 0, \tau_{f i}^{-1}\right)=\sqrt{\frac{\tau_{f i}}{2 \pi}} \exp \left(-\frac{\tau_{f i}}{2}\left|F_{i}\right|^{2}\right)
$$

The corresponding Bayesian formulation is expressed as

$$
p\left(\mathbf{F}, \tau_{n}, \tau_{f_{i}} \mid \mathbf{X}\right) \propto p\left(\mathbf{X} \mid \mathbf{F}, \tau_{n}\right) \prod_{i=1}^{M} p\left(F_{i} \mid \tau_{f_{i}}\right) p\left(\tau_{f i}\right) \text { with } p\left(\tau_{f i}\right)=\mathcal{G}\left(\tau_{f_{i}} \mid \alpha_{f i}, \beta_{f i}\right)
$$

Main features

- Implementation of MAP estimation and UQ via Gibbs sampling require minor changes of the algorithms described previously
- More parameters needs to be infered ($M+3$ for CBF and $2 M+1$ for RVR)
- Computationally more efficient than CBF

Relevant Vector Regression Application

Optimization

UQ - Sampling

Relevant Vector Regression Why does it work so well?

Relevant Vector Regression Why does it work so well?

The parameters $\boldsymbol{\tau}_{f i}$ and \boldsymbol{q} play a similar role
\Rightarrow The larger the value of $\tau_{f i}$, the closer the value of F_{i} is to 0

Relevant Vector Regression Why does it work so well?

Piecewise constant excitation Objective

Reconstruct

From

Piecewise constant excitation Naive application

None of the strategies described previously is able to properly reconstruct the excitation field!

What to do?

Promote piecewise constant solution!

Piecewise constant excitation Intuition

The first derivative of the excitation field is sparse
\Rightarrow Promote the sparsity of $\frac{\partial \mathbf{F}(x)}{\partial x}$

Piecewise constant excitation Implementation

Using the discretized first-order derivative operator \mathbf{D}

$$
\mathbf{D}=\frac{1}{\Delta x}\left(\begin{array}{ccccc}
1 & -1 & & & \\
& 1 & -1 & & \\
& & \ddots & \ddots & \\
& & & 1 & -1
\end{array}\right)_{(M-1) \times M}
$$

One has the following prior probability distributions

Complete Bayesian formulation

$$
p\left(\mathbf{F} \mid \tau_{f}, q\right) \propto \exp \left(-\tau_{f}\|\mathbf{D F}\|_{q}^{q}\right)
$$

Relevant vector regression

$$
p\left(F_{i} \mid \tau_{f j}\right) \propto \exp \left(-\frac{\tau_{f j}}{2}\left|D_{j i} F_{i}\right|^{2}\right)
$$

Piecewise constant excitation Application

Piecewise constant excitation Application

Conclusions

- The Bayesian framework provides an efficient and convenient way to combine probabilistic and mechanical data
- It allows exploiting one's prior knowledge of the sources to identify
- It includes an internal mechanism of regularization
- No external procedures are required to infer or optimize all the parameters of the model

Other applications in force reconstruction

- Group regularization - e.g. Identification of external forces and BC on plates
- Mixed-norm regularization - e.g. Identification of space-frequency/time features of excitation sources

Application in other fields

- Image/signal processing (e.g. denoising)
- Acoustics (e.g. fault diagnosis, source reconstruction)
- Material science, Structural mechanics (e.g. parameter estimation, OMA, cracks detection)
- Computer science (e.g. neural networks, bayesian programming)
- Thermal science, Econometrics, Epidemiology, .

Only the sky is the limit !

Or, maybe, the quantity/quality of available data, the complexity of the problem, the computing power/resources, ...

Force reconstruction

A Bayesian perspective

(5) https://github.com/maucejo/MOIRA_Workshop_BFR

Well-posed problem in the sense of Hadamard (1902)

- A solution exist
- The solution is unique
- The solution changes continuously with changes in the data

Well-posed problem in the sense of Hadamard (1902)

\checkmark A solution exist
\checkmark The solution is unique
x The solution changes continuously with changes in the data

Well-posed problem in the sense of Hadamard (1902)

\checkmark A solution exist
\checkmark The solution is unique
x The solution changes continuously with changes in the data
\Leftrightarrow The problem considered in this lecture is ill-posed

ℓ_{q}-regularization Filter factor analysis at convergence

$$
\widehat{\mathbf{F}}=\sum_{i=1}^{21} f_{i} \frac{\mathbf{v}_{i} \mathbf{u}_{i}^{H} \mathbf{X}}{\sigma_{i}} \text { with } f_{i}=\frac{\gamma_{i}^{2}}{\gamma_{i}^{2}+\lambda}
$$

where γ_{i} are the singular values of (\mathbf{H}, \mathbf{L}) and σ_{i} are the singular values of \mathbf{H}

Generalized SVD

$$
\mathbf{H}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{Y}^{H} \text { and } \mathbf{L}=\mathbf{V} \boldsymbol{\Omega} \mathbf{Y}^{H}
$$

Properties of GSVD

$$
\boldsymbol{\Sigma}^{H} \boldsymbol{\Sigma}+\boldsymbol{\Omega}^{H} \boldsymbol{\Omega}=\mathbf{I} \text { and } \gamma_{i}=\frac{\sigma_{i}}{\omega_{i}}
$$

ℓ_{q}-regularization Filter factor analysis at convergence

Properties of Gaussian distributions Marginal and Conditional distributions

Let's consider two random vectors, \mathbf{x} and \mathbf{y}, such that

$$
p(\mathbf{x})=\mathcal{N}_{c}\left(\mathbf{x} \mid \boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{x}}\right) \text { and } p(\mathbf{y} \mid \mathbf{x})=\mathcal{N}_{c}\left(\mathbf{y} \mid \mathbf{A x}+\mathbf{b}, \boldsymbol{\Sigma}_{\mathbf{y}}\right)
$$

From these distributions, the marginal and conditional distributions, $p(\mathbf{y})$ and $p(\mathbf{x} \mid \mathbf{y})$ are given by

$$
\begin{aligned}
p(\mathbf{y}) & =\mathcal{N}_{c}\left(\mathbf{y} \mid \mathbf{A} \boldsymbol{\mu}_{\mathbf{x}}+\mathbf{b}, \mathbf{A} \boldsymbol{\Sigma}_{\mathbf{x}} \mathbf{A}^{H}+\boldsymbol{\Sigma}_{\mathbf{y}}\right) \\
p(\mathbf{x} \mid \mathbf{y}) & =\mathcal{N}_{c}\left(\mathbf{x} \mid \boldsymbol{\Sigma}\left\{\mathbf{A}^{H} \boldsymbol{\Sigma}_{\mathbf{y}}^{-1}(\mathbf{y}-\mathbf{b})+\boldsymbol{\Sigma}_{\mathbf{x}}^{-1} \boldsymbol{\mu}_{\mathbf{x}}\right\}, \boldsymbol{\Sigma}\right)
\end{aligned}
$$

with $\boldsymbol{\Sigma}=\left(\mathbf{A}^{H} \boldsymbol{\Sigma}_{\mathbf{y}}^{-1} \mathbf{A}+\boldsymbol{\Sigma}_{\mathbf{x}}^{-1}\right)^{-1}$

Drawing samples from multivariate Gaussian distribution

Let's consider a random Gaussian vector \mathbf{x} such that

$$
p(\mathbf{x})=\mathcal{N}_{c}\left(\mathbf{x} \mid \boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{x}}\right)
$$

By assuming that $\boldsymbol{\Sigma}_{\mathbf{x}}=\mathbf{S} \mathbf{S}^{H}$, one has

$$
\begin{aligned}
\exp \left[-\left(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}}\right)^{H} \boldsymbol{\Sigma}_{\mathbf{x}}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}}\right)\right] & =\exp \left[-\left\{\mathbf{S}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}}\right)\right\}^{H}\left\{\mathbf{S}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}}\right)\right\}\right] \\
& =\exp \left[-\mathbf{z}^{H} \mathbf{z}\right]
\end{aligned}
$$

where $\mathbf{z}=\mathbf{S}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}}\right)$ and $\mathbf{z} \sim \mathcal{N}_{c}(\mathbf{z} \mid \mathbf{0}, \mathbf{I})$
Consequently, to draw samples from a multivariate Gaussian distribution with mean $\boldsymbol{\mu}_{\mathbf{x}}$ and covariance matrix $\boldsymbol{\Sigma}_{\mathbf{x}}$, it is enough to compute

$$
\mathbf{x}^{(k)}=\boldsymbol{\mu}_{\mathbf{x}}+\mathbf{S} \mathbf{z}^{(k)} \text { with } \mathbf{S S}^{H}=\mathbf{\Sigma}_{\mathbf{x}} \text { and } \mathbf{z}^{(k)} \sim \mathcal{N}_{c}\left(\mathbf{z}^{(k)} \mid \mathbf{0}, \mathbf{I}\right)
$$

Calculation of τ_{n} and τ_{f}

By using the Bayes' rule, the conditional distribution $p\left(\tau_{n}, \tau_{f} \mid \mathbf{X}\right)$ is expressed as

$$
p\left(\tau_{n}, \tau_{f} \mid \mathbf{X}\right) \propto p\left(\mathbf{X} \mid \tau_{n}, \tau_{f}\right) p\left(\tau_{n}\right) p\left(\tau_{f}\right)
$$

Assuming that $p\left(\tau_{n}\right)=p\left(\tau_{f}\right) \propto 1$, one has

$$
p\left(\tau_{n}, \tau_{f} \mid \mathbf{X}\right) \propto p\left(\mathbf{X} \mid \tau_{n}, \tau_{f}\right)=\int_{\mathbf{F}} p\left(\mathbf{X} \mid \mathbf{F}, \tau_{n}\right) p\left(\mathbf{F} \mid \mathbf{W}, \tau_{f}\right) d \mathbf{F}
$$

Using the fact that all the conditional distributions are Gaussian, one establishes that

$$
p\left(\tau_{n}, \tau_{f} \mid \mathbf{X}\right) \propto \mathcal{N}_{c}\left(\mathbf{X} \mid \mathbf{0}, \mathbf{H} \mathbf{W}^{-1} \mathbf{H}^{H} / \tau_{f}+\mathbf{I} / \tau_{n}\right)
$$

The MAP estimate is found by solving

$$
\left(\widehat{\tau}_{n}, \widehat{\tau}_{f}\right)=\underset{\left(\tau_{n}, \tau_{f}\right)}{\operatorname{argmin}}-\log \left[p\left(\tau_{n}, \tau_{f} \mid \mathbf{X}\right)\right]
$$

By noting $\lambda=\tau_{n} / \tau_{f}$, it comes

$$
\left(\widehat{\tau}_{n}, \widehat{\tau}_{f}\right)=\underset{\left(\tau_{n}, \tau_{f}\right)}{\operatorname{argmin}} \tau_{f} \mathbf{X}^{H}\left(\mathbf{H} \mathbf{W}^{-1} \mathbf{H}^{H}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}-N \log \tau_{f}+\log \left|\mathbf{H} \mathbf{W}^{-1} \mathbf{H}^{H}+\lambda \mathbf{I}\right|
$$

By applying the first-order optimality condition, one finds

$$
\widehat{\tau}_{f}=\frac{N}{\mathbf{X}^{H}\left(\mathbf{H} \mathbf{W}^{-1} \mathbf{H}^{H}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}}
$$

